
An Architecture for an R Plugin for Gnumeric

Duncan Temple Lang

June 28, 2002

Abstract

We discuss the basic architecture of, and some of the issues related to embedding R within Gnumeric
the spreadsheet. We start with describing the elements we might inherit from the Python plugin.

1 Why Gnumeric?

The spreadsheet interface are convenient for certain tasks, and for certain types of users. They allow one
to easily layout different elements of analysis. One can print spreadsheets to Postscript and PDF. It is
extensible, allowing plugins for different file formats, embedded languages, etc. It has CORBA support.

2 Startup

When the plugin is started, we read the startup file of R code from the package’s library.
Additionally, we read the profile not from R_PROFILE, but R_GNUMERIC_PROFILE. This defaults to HOME/.gnumeric/rc.R.

Use R_LoadProfile().

3 Defining New Functions

We can do this from within R or from Gnumeric. Each function is specified by

• name,

• category,

• parameter types,

• parameter names,

• help string/documentation,

• the R function (by value or by name?).

Each R function should take a .gnumeric argument which allows it to make callbacks to the worksheet
from which it was called and also access other functions within the gnumeric application itself.

The argument types are (taken from the gnumeric-python document)

f A floating point value.
s A string.
b A boolean.
r A Range, e. g. A1:A5 - See ’A’
a An Array e. g. 1,2,3;4,5,6 (a 3x2 array) - See ’A’
A Either an Array or a Range.
? Any type.
| This designates that the arguments in the token string following

this character are optional.

1

http://cvs.gnome.org/lxr/source/gnumeric/doc/python-gnumeric.txt

June 28, 2002 introduction.nw 2

We wil also want dates, etc. And we will approach this using the general, extensible converter mechanism
used in the other packages. Additionally, we will probably put a different, more S-like interface such as

defineGnumericFunction(name, category, c("integer", "float",
"floatArray", "range"))

One calls the functions by the name they were given at declaration time.
Named arguments and optional number of arguments (. . .) are always a challenge and require some special

mechanism.
To call a gnumeric function from R, we use the .gnumeric argument. We treat it like an classically

object-oriented instance and invoke methods within it.
We want to be able to return the results to R and also to add them to the worksheet.
We may be able to store the USER_OBJECT_ that is the function in the FunctionDef using the function_def_set_user_data().

This would avoid the use of the static funclist and the potentially expensive lookup.
Calls to functions with a fixed number of arguments that supply an incorrect number of arguments in

the call are caught by the gnumeric engine.
Define an R “call” function which takes the name of the R function to invoke.
Pass all function calls in the marshalling to an intermediate handler function that actually does the

dispatching. This can then determine if the function has a .sheet and/or .cell argument. We can also do this
via C code. See the function gnumeric.hasSheetArgument().

Look at the IDL for Gnumeric to get the interface.
A different approach to cells is to return references to cell objects. Then one can use operator overloading

to get its value as in

sheet[1,2]$value

Also, one can then set attributes of the cell in the natural assignment fashion.

sheet[1,2]$value <- 10
sheet[1,2]$foreground <- c(65535,0,0)
sheet[1,2]$italic <- TRUE

May be worth experimenting with this interface.

4 The Sheet Object

The sheet object can be passed as an argument in all calls. This is an S object of class GnumericSheet. One
can invoke methods on this object. For example, one can ask it for the dimensions of the sheet’s extent. One
can also ask it for particular cell values or ranges of these values.

5 Event Loop

As with all embedding, integrating the even loop is an important concern. The standard graphics devices
do not get updated on a resize (or when the window is raised to the foreground and X server backing store
is not on.)

6 Errors

Need to add an implementation of jump_now().

7 XML

We can generate output in XML format to appear in a Gnumeric worksheet.

June 28, 2002 introduction.nw 3

8 Installing the Plugin

To make the plugin accessible from gnumeric, you will need to put the plugin.xml and RGnumericPlugin.so
into a directory in the plugins/ directory that Gnumeric searches. Currently, I don’t see a way for us to
automatically determine this. Instead, you will have to look for the directory. On my machine, compiling
gnumeric from source uses the directory /usr/local/lib/gnumeric/0.64/plugins/ for this purpose. There
is a directory named applix/ within this. Let’s denote this directory by the variable GNUMERIC_PLUGIN_DIR.
Then, the following

The installation is quite simple. As usual, you will need to arrange to have the application be able to find
libR.so. You can do this by setting the LD_LIBRARY_PATH to point to R_HOME/bin. Alternatively, you can
add that directory to those that the system loader (ld-so) searches. Within Linux, we can do this by editing
the ld.so.conf and appending this directory the list. Don’t forget to rerun ldconfig to rebuild the cache.

9 Questions

How does the call from gnumeric pass control to the interpreter? In other words, which routine in the plugin
is invoked? See the file src/func.h in the gnumeric source. This file provides numerous routines.

The two routines we want are function_add_args() and function_add_nodes() which handle the
different types of functions. These are distinguished by having fixed parameters types and an arbitrary
number arbitrary typed parameters.

When the function is called, it is done by a call to a routine that we pass to the registration function.
This routine should have a signature

Value * ()(FunctionEvalInfo *ei, Value **args);

The FunctionEvalInfo contains information about the context in which the function has been invoked and
also the FunctionDefinition.

How do we signal an error?

10 References

We can store a reference to an R object in a cell and thus hold it around for use in future computations.

11 Examples

To start developing the plugin and to test it, we need some examples. These examples should test the
different styles of functions and the different parameter types.

11.1 Random Number Generation

We start with returning a single random value.
We will allow the user to sample a single observation from a Normal and and a bernoulli random variable

using the S functions rnorm() and rbinom().

gnumeric.registerFunction("rbernoulli", "f" , "probability",
function(p){rbinom(1,1, p)},
"return a value sampled from a Bernoulli random variable.")

Since this is called with a fixed number of arguments of specific types (a single real number), we use the
invocation mechanism RGnumeric_fixedArgCall(). This converts the arguments to R objects and creates
a function call. It evaluates this call and then converts the result to a Gnumeric type.

Next, we extend these to return an array of values and to take a range of values as inputs.

June 28, 2002 introduction.nw 4

11.2

Defining a new function means that it is re-defined each time we recompute the spreadsheet. This makes for
interesting synchronization problems and circularity. Thus it should be avoided. We would like to be able
to declare a cell as “evaluate once” only.

11.3 Classification

Classification and clustering is an important tool in data analysis. With the integration of R, we can use
quite sophisticated models to perform the classification and then use the results to predict new values.

We start with a simple scenario. Somebody first fits a model to a training set of variables and observations.
We call this model myFit() and assume it is stored (in binary XDR format) in a file named myFit. We can
load this into the R session using the Gnumeric extension function load(). Then, this fit is available to the
R session. We can then define a function to make predictions from this model.

We provide the new observations in columns within a spreadsheet. We define the output column that
contains the predictions from these records. Suppose, the predictors are in columns A, B, . . ., K. Then, we
define a column L which is the result of predicting from the other columns. Suppose we have function named
myPredict() which has access to the myFit() object. Then, the first cell in column L is defined as

=myPredict(A1:K1)

and then we use the AutoFill facility to copy this cell to other rows.
The function myPredict() is defined to accept a range of cells. It then fetches these values and converts

them to the appropriate types and performs the prediction.
Regression is a simple case that can be handled with a formula in Gnumeric. Given the estimated

coefficients of the linear model, we use these in a regular linear model formula to make the predictions

y = β0 + β1X1 + . . . + βkXk

Can we have R write a formula into one or more cells from such a linear model? What about sheet_cell_set_expr()?
Classification and regression trees are more problematic. These are non-parameteric fits and cannot be

easily represented by simple formulae. Thus, we want to use R’s existing functionality not only to fit these,
but also to make predictions from these.

12 Statistical Functionality

Gnumeric already has support for some of the standard statistical methodologies (z- and t-tests, regression,
sampling, etc.) These have graphical interfaces. It would be interesting to see if we can provide interfaces
for other statistical functionality and to do this from within R.

Also, we should consider ways to output R objects in “display” format within the Gnumeric spreadsheet
cells.

13 Graphics Devices

Given the changes to the X11 device t support graphics devices as “inlined” plugins within a Netscape
page/document, we should be able to use a cell in the gnumeric spreadsheet as a container/canvas for an R
graphics device. In this way, we can embed R plots within the spreadsheet interface and dynamically update
them as part of the recalculation cycle. This would allow the rich graphics model and the wide variety of
plots that R is capable of producing be directly and simply imported into gnumeric. This has potentially a
wide audience as it would reduce the dependency by gnumeric on Guppi, etc.

June 28, 2002 introduction.nw 5

14 Gnumeric in R

The other side of this interface is to run gnumeric as a plugin to R. This would allow a user to start Gnumeric
as a data editor or front-end for R at any point in the R session. This should be reasonably simple to arrange,
by having gnumeric as a shared library.

15 Remote Interface: CORBA

We have CORBA facilities in R and Gnumeric offers a CORBA interface. The issues we have to sort out are

• locating the gnumeric object when not using the gnome desktop and its naming services; and

• using ORBit within R.

These are orthogonal and non-dependent issues.

16 Gtk Bindings for R

I am moving closer to starting to implement bindings from R to Gtk. This would allow us to programmatically
from within R create new tools that utilized the growing number of Gtk widgets. For example, we would be
able to build dialogs, etc. for ggobi. Additionally, we might create a new interface for ggobi that included
one or more R graphics devices and ggobi elements/components.

It would be nice to have a (partially) automated mechanism to implement the interface. I have been
considering developing a version of a SWIG-like tool perhaps using lcc. I have already modified lcc to identify
and potentially remove non-local variables for the threading setup. A SWIG-like tool would not be too hard
to develop with this, but does require thinking about the pass-by-value and pass-by-reference semantics that
may be undetectable from C.

	Why Gnumeric?
	Startup
	Defining New Functions
	The Sheet Object
	Event Loop
	Errors
	XML
	Installing the Plugin
	Questions
	References
	Examples
	Random Number Generation
	
	Classification

	Statistical Functionality
	Graphics Devices
	Gnumeric in R
	Remote Interface: CORBA
	Gtk Bindings for R

