August 5, 2001 1

Abstract

This describes how one can call R functions from Python.

1 Examples

I
import RS

RS.call("rnorm", 10)

RS.call("objects")
RS.call("objects",3)

RS.call("sin", 2)
RS.call("sin", 2.0)

RS.call("plot", [1,2,3,4])

RS.call("plot”, RS.call("rnorm", 10))

2 Named Arguments

What if we want to do something with named arguments in R? Note the argument METH KEYWORDS when declar-
ing C-level entry points.

I

RS.call("plot”, x,y, xaxis="foo")

As with the Java interface, it is essential that we be able to deal with non-primitive objects and send Python objects
to R and vice-versa. We do this with references. Non-primitive Python objects are stored internally at the C level and
a reference identifying them is sent to R aByahonReference. (See the Perl interface.) Then, the R side can call
methods on those objects via the .Python (yet to be done!).

I
RS.call("foo", pyObj, .convert = FALSE)

Need an RS.get function in Python to retrieve objects, not just methods. Like Java’s fields.
When we have the OOP in R and S, we will want to be able to call methods on objects.
Also, when method dispatching in R/S, want to pass “signature”.

Anonymous References

Also, want R to know what the $ operator is for Python object references.

3 References

The key development in this style of interface is that complex objects (i.e. non-primitive values) defined in one
language remain in that language, by default, and are not serialized to the other language. For example, if we create a
linear model fit in R, we do not attempt to represent its contents in Python, but instead we export its functionality to
Python by providing it as a reference to an R object. But Python needs it to be a Python object. Therefore, we create

August 5, 2001 2

the a Python object of clag&Python that refers to this R object. Given multiple inheritance, we can create a class that
is derived fromRPython and also from another class.

I
setenv PYTHONPATH ‘pwd‘/tests:‘pwd‘/PySrc

Here we create an instance of an R reference and caltit8 'R() method. Note that this will then pass control to
a C routine that will carry out the call to the R function, additionally passing the name/identifier of the referenced R
object implicit in the Python object.

I

>>> from RReference import *
>>> r = RForeignReference("duncan”)
>>> r, callS_ ("plot", x=1, y=2, xlab="A string")

The RForeignReference objects are rarely useful by themselves. Instead, we want a Python object that is both a
reference to an R object and also a class that does something. Suppose

I

Consider the ftplib module. Can we register an R function as the callback in the retrlines method call? We can use
several different approaches. We incrementally evolve to using an R closure to handle reading the lines/entries. We
start by using our own Python function as follows:

I
def myline(x):
print("****'+x)

ftp = FTP(franz.stat.wisc.edu’)

ftp.login()
ftp.retrlines(LIST’,myline)

We should be able to specify an anonymous function, but this seems to have syntax problems!

I
ftp.retrlines(LIST’, labmda x: print(***'+x))

Next, we use a method from a Python class

I

class lineCumulator:

"Cumulates lines"

def __init__ (self):
self.lines = []

def add(self, x):
self.lines.append(x)

def clear(self):
self.lines.clear();

August 5, 2001

def getLines(self):
return(self.lines)

k = lineCumulator()
ftp.retrlines(LIST’, k.add)
k.getLines()

Now, let’s invoke an R function.
[l

import RS
def rline(x):
RS.call("print", Xx)

ftp.retrlines(LIST’, rline)

Now lets do the aggregation or cumulation in R. We define a closure

I

lineCumulator <-
function()
{
lines <- character(0)
add <- function(x) {
lines
<<- c(lines, x)

}

x <- list(add=add, lines=function() {lines})
class(x) <- "LineCumulator"
return(x)

Now, from R this can be used in the following manner:

> k <- lineCumulator()
k$add("123")
k$add("a b c")

> k$lines()

[1] "123" "a b c"

vV V

@%$
How do we call this from Python? We have seen how to call the
\SFunction{print} function and we can use the same approach.

I

k <- lineCumulator()
add <- k$add

August 5, 2001 4

getLines <- k$lines

Now, save this session and start the Python interpreter.

I
python

import RS
def rline(x):
RS.call("add", x)

ftp = FTP(franz.stat.wisc.edu’)
ftp.login()

ftp.retrlines(LIST’, rline)
RS.call("getLines")

This approach works, but requires that we have “instance” methods of a closure as global functions. This prohibits
us from having two instances working simultaneously or being called in an interleaved order. A cleaner, more robust
and more maintainable approach is to get the closure instaagéd($function and have Python invoke this directly.

In Python, we create the instance of the closure by calling the R funlatie@Gumulator()

I

klosure = RS.call("lineCumulator")
def rline(x):
RS.call("add", x, .ref=klosure)

or alternatively, we can fetch the add function once and write a Python function to call it directly.

I
addFunction = RS.get(klosure, "add")

def rline(x):
RS.call(addFunction, x)

ftp.retrlines(LIST’, rline)

The RS.call() can operate on both function names and function references. Additionally, noteftheargument
which allows us to invoke a method contained in that reference, identifying the method by the name given as the first
argument.

It would be nice to be able to create a Python object that was both a function object and a reference to an R
function. In our example, the Python objextdFunction would then be a callable Python function. In this way,
we avoid having to write the wrapper function.

I

import RS;

klosure = RS.call("lineCumulator")
RS.call("add", "abc", ref=klosure)
RS.call("add", "abc", ref=klosure)
RS.call("add", "abc", ref=klosure)

RS.call("lines", ref=klosure)

August 5, 2001 5

Here we fetch a reference to an R object, the funcsiam()and assign this reference to a Python variablélhen
we invoke the R function by passing the reference as the funtion identifier (“name”) in the Rallddli().

I

>>> import RS

>>> s = RS.get("sum")
>>> RS.call(s, [1,2,3])
6

4 References from S

We us

	Examples
	Named Arguments
	References
	References from S

