
August 5, 2001 1

Abstract

This describes how one can call R functions from Python.

1 Examples

[]
import RS

RS.call("rnorm", 10)

RS.call("objects")
RS.call("objects",3)

RS.call("sin", 2)
RS.call("sin", 2.0)

RS.call("plot", [1,2,3,4])

RS.call("plot", RS.call("rnorm", 10))

2 Named Arguments

What if we want to do something with named arguments in R? Note the argument METH˙KEYWORDS when declar-
ing C-level entry points.

[]
RS.call("plot", x,y, xaxis="foo")

As with the Java interface, it is essential that we be able to deal with non-primitive objects and send Python objects
to R and vice-versa. We do this with references. Non-primitive Python objects are stored internally at the C level and
a reference identifying them is sent to R as aPythonReference. (See the Perl interface.) Then, the R side can call
methods on those objects via the .Python (yet to be done!).

[]
RS.call("foo", pyObj, .convert = FALSE)

Need an RS.get function in Python to retrieve objects, not just methods. Like Java’s fields.
When we have the OOP in R and S, we will want to be able to call methods on objects.
Also, when method dispatching in R/S, want to pass “signature”.
Anonymous References
Also, want R to know what the $ operator is for Python object references.

3 References

The key development in this style of interface is that complex objects (i.e. non-primitive values) defined in one
language remain in that language, by default, and are not serialized to the other language. For example, if we create a
linear model fit in R, we do not attempt to represent its contents in Python, but instead we export its functionality to
Python by providing it as a reference to an R object. But Python needs it to be a Python object. Therefore, we create

August 5, 2001 2

the a Python object of classRPython that refers to this R object. Given multiple inheritance, we can create a class that
is derived fromRPython and also from another class.

[]
setenv PYTHONPATH ‘pwd‘/tests:‘pwd‘/PySrc

Here we create an instance of an R reference and call its˙˙call˙R() method. Note that this will then pass control to
a C routine that will carry out the call to the R function, additionally passing the name/identifier of the referenced R
object implicit in the Python object.

[]
>>> from RReference import *
>>> r = RForeignReference("duncan")
>>> r.__callS__("plot", x=1, y=2, xlab="A string")

The RForeignReference objects are rarely useful by themselves. Instead, we want a Python object that is both a
reference to an R object and also a class that does something. Suppose

[]

Consider the ftplib module. Can we register an R function as the callback in the retrlines method call? We can use
several different approaches. We incrementally evolve to using an R closure to handle reading the lines/entries. We
start by using our own Python function as follows:

[]
def myline(x):

print(’****’+x)

ftp = FTP(’franz.stat.wisc.edu’)
ftp.login()
ftp.retrlines(’LIST’,myline)

We should be able to specify an anonymous function, but this seems to have syntax problems!

[]
ftp.retrlines(’LIST’, labmda x: print(’***’+x))

Next, we use a method from a Python class

[]
class lineCumulator:

"Cumulates lines"
def __init__(self):

self.lines = []
def add(self, x):

self.lines.append(x)
def clear(self):

self.lines.clear();

August 5, 2001 3

def getLines(self):
return(self.lines)

k = lineCumulator()
ftp.retrlines(’LIST’, k.add)
k.getLines()

Now, let’s invoke an R function.

[]

import RS
def rline(x):

RS.call("print", x)

ftp.retrlines(’LIST’, rline)

Now lets do the aggregation or cumulation in R. We define a closure

[]
lineCumulator <-
function()
{

lines <- character(0)
add <- function(x) {

lines
<<- c(lines, x)

}

x <- list(add=add, lines=function() {lines})
class(x) <- "LineCumulator"
return(x)

}

Now, from R this can be used in the following manner:

[]
> k <- lineCumulator()
> k$add("123")
> k$add("a b c")
> k$lines()
[1] "123" "a b c"

@%$
How do we call this from Python? We have seen how to call the

\SFunction{print} function and we can use the same approach.

[]
k <- lineCumulator()
add <- k$add

August 5, 2001 4

getLines <- k$lines

Now, save this session and start the Python interpreter.

[]
python

import RS
def rline(x):

RS.call("add", x)

ftp = FTP(’franz.stat.wisc.edu’)
ftp.login()
ftp.retrlines(’LIST’, rline)
RS.call("getLines")

This approach works, but requires that we have “instance” methods of a closure as global functions. This prohibits
us from having two instances working simultaneously or being called in an interleaved order. A cleaner, more robust
and more maintainable approach is to get the closure instance’sadd() function and have Python invoke this directly.
In Python, we create the instance of the closure by calling the R functionlineCumulator().

[]
klosure = RS.call("lineCumulator")

def rline(x):
RS.call("add", x, .ref=klosure)

or alternatively, we can fetch the add function once and write a Python function to call it directly.

[]
addFunction = RS.get(klosure, "add")
def rline(x):

RS.call(addFunction, x)

ftp.retrlines(’LIST’, rline)

TheRS.call() can operate on both function names and function references. Additionally, note the.ref argument
which allows us to invoke a method contained in that reference, identifying the method by the name given as the first
argument.

It would be nice to be able to create a Python object that was both a function object and a reference to an R
function. In our example, the Python objectaddFunction would then be a callable Python function. In this way,
we avoid having to write the wrapper function.

[]
import RS;
klosure = RS.call("lineCumulator")
RS.call("add", "abc", ref=klosure)
RS.call("add", "abc", ref=klosure)
RS.call("add", "abc", ref=klosure)

RS.call("lines", ref=klosure)

August 5, 2001 5

Here we fetch a reference to an R object, the functionsum()and assign this reference to a Python variable,s . Then
we invoke the R function by passing the reference as the funtion identifier (“name”) in the call toRS.call().

[]
>>> import RS
>>> s = RS.get("sum")
>>> RS.call(s, [1,2,3])
6

4 References from S

We us

	Examples
	Named Arguments
	References
	References from S

