
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

R as a Web Client – the RCurl package

Duncan Temple Lang
Department of Statistics,

Unversity of California at Davis

Abstract

The Web is clearly an important source of data for statisticians as is emerging as vital
component in distributed computing via Web services. HTTP is the primary mechanism
that underlies the Web and data transfer. As such, it is important for programming lan-
guages to have tools for HTTP requests and other protocols. We describe the RCurl
package that provides an interface to a general HTTP and Web protocol library – libcurl.
This paper provides an overview of the user-level facilities provided to R programmers
by this interface, as well as some simple examples as to how to use these. More detailed
examples of advanced topics are also discussed, focusing on asynchronous requests. Fi-
nally, we discuss alternative approaches to implementing such facilities in R. The package
is available from the Omegahat Web site at http://www.omegahat.org/RCurl.

Keywords: HTTP, Web services, HTML, XML, data.

1. Motivation

“Web Services” is a relatively recently introduced “buzz” phrase. And, of course, the Web
and the HyperText Transfer Protocol - HTTP - that underlies the communication of data on
the Web have become a vital part of our information network and day to day environment.
Measuring the proportion of data sent via HTTP can be difficult, but estimates range from
31% to 75% Claffy and Miller (1998), Spr (2004). Accordingly, being able to access various
forms of data using HTTP is an important facility in a general programming language. We
want to be able to download files, get data via HTML (HyperText Markup Language (2006)
(W3C)) forms, “scrape” HTML page content as data itself, and use SOAP (Simple Object
Access Protocol) Snell, Tidwell, and Kulchenko (2002) to invoke methods provided via Web
Services. And, importantly, we want to be able to rapidly take advantage of new and future
technologies as they emerge that leverage the increasingly ubiquitous HTTP and other Web
protocols.
The connections framework of S4 Chambers (1999) provided a general model for input and

http://www.jstatsoft.org/
http://www.omegahat.org/RCurl

2 R as a Web Client – the RCurl package

output streams for the S language. The implementation of this, primarily by Brian D. Ripley,
for the R environment R Development Core Team (2005) has incorporated the HTTP (and
FTP) facilities of the libxml suite Veillard (2006) and allowed R to provide network facilities.
These provide R with important tools for downloading documents via HTTP. However, they
do not allow the user to control various essential aspects for general HTTP use. They only
support, in the words of Daniel Veillard, the author of the libxml tools,

a minimalist HTTP GET ... This is clearly not a general purpose HTTP
implementation.

It does not support the POST mechanism in HTTP for submitting forms, or uploading files.
Importantly, it does not support secure HTTP (HTTPS) – HTTP over SSL (Secure Socket
Layer) Viega, Messier, and Chandra (2002) which provide secure, confidential, encrypted
connections. Additionally, R users cannot provide information that governs the connection
to the HTTP server. Information in the header part of an HTTP request such as persistent
connections, the identity of the user agent and passwords for authentication are not specifiable
via this interface. At the content-level for a request, one has to provide the HTTP request
in explicit form, converting special characters to their HTTP equivalent. For example, literal
spaces in the document name must be specified as %20.
The existing support in R for HTTP facilities has been terrifically valuable. However, these
are intended only for existing, basic use and are not extensible at the user programming level.
They cannot therefore be easily used as-is for accessing Web services or any customized Web
applications in R. Since the code was copied from libxml into the R code base (rather than
dynamically linked), any enhancements to the basic engine in libxml will not be accessible
to R without repeating the work. And, importantly, this means security concerns that have
manifested themselves in libxml are also potential vulnerabilities in R.
Given the increasing role of HTTP and Web connectivity, and the desire to use R in ways
that can access data and services in other domains via HTTP, a more general, flexible and
complete R-language interface to client-side HTTP is desirable. And ideally we want to base
this on evolving and maintained software whose updates can be readily incorporated into this
interface with little additional work. The RCurl package provides such an interface for R. It
is based on the cURL C-level library that underlies the commonly used curl command-line
utility downloading documents and Web sites. It has support for numerous protocols includ-
ing HTTP/HTTPS, FTP/FTPS/TFTP (trivial file transfer protocol), LDAP (Lightweight
Directory Access Protocol) and is highly configurable both in the options it supports and also
in how input and output can be customized by the host application, i.e. R in our case. This
package provides a rich infrastructure on which the R community can build Web-based client
software. It is not intended to be a direct replacement for the existing connections tools and
functionality. Tools such as download.url() are either built into the R code base and require
no additional software to be installed, or invoke external applications that are typically avail-
able on a given platform. Rather, the RCurl package provides a tightly integrated interface
to a high quality, widely used and high-level library for Web connectivity and requires the
installation of this highly portable libcurl library.
The remainder of this paper is organized as follows. In section 2, we provide a brief guide to
HTTP and its different elements. We then discuss the RCurl package and give an overview
of its facilities and the primary functions it provides in section 3. Section 4 provides some
relatively simple examples of how to use the package and then we follow this with more

Journal of Statistical Software 3

more advanced case studies in section 5. And finally, we discuss other approaches and some
potential additions. Rather than providing terse definitions for some technical terms that are
merely mentioned in the paper, descriptions of some of these terms are provided in a glossary.
We do not recreate in this paper the examples in the help pages or the simple ones available
on the Web site. Rather, we try to provide a more conceptual view of the package so that
people can think about how to utilize it rather than merely copy existing code.

2. Overview of HTTP

In this section, we will provide a high-level, relatively brief description of various aspects of
HTTP - the HyperText Transfer Protocol. It is not intended to be exhaustive, but to illustrate
some of its features and show that a full implementation can quickly become complex. Those
familiar with HTTP may want to skip to the end of this section.
HTTP is, in many respects, a simple mechanism to request a document from a Web server. All
of us are familiar with using our Web browser to request a document At its simplest, we send
the full name of the document to a Web server, e.g. http://wwww.omegahat.org/RCurl/index.html.
This identifies

• the protocol for the request - http,

• the name of the Web server or host - www.omegahat.org

• and the fully qualified path name of the specific document (RCurl/index.html) relative
the the server’s top-level node.

Our client software (e.g. the browser) uses this information to communicate with the Web
server. It establishes a connection to the server via a socket, typically connecting to the Web
server machine’s port 80. Having established the basic communication channel, the client
makes the request by sending (at least) the following 3 lines:

1 GET /RCurl/index.html HTTP/1.1
2 Host: www.omegahat.org
3

These lines are quite easy to understand. The first word – GET – identifies the nature of the
request, or the action. This means that we want to retrieve a document from the Web server.
We can also POST information to a Web server such as uploading a file or submitting data
for an HTML form. And HTTP provides several other actions: PROPERTY, OPTIONS,
HEAD, PUT, DELETE, TRACE, CONNECT. The next word in the request is the name of
the document being requested - /RCurl/index.html. And lastly on the first line is HTTP/1.1
which identifies the dialect of the protocol we are speaking. This tells the Web server that
we are using HTTP and, in particular, version 1.1. There are two options for this - 1.0 and
1.1 and as you might guess, 1.1 is more recent and more flexible.
The second line (Host: wwww.omegahat.org) seems redundant as this is the name of the host
to which we connected. However, it is necessary as it helps a Web server which hosts multiple
virtual sites via the same machine. This tells the server application the identity of the virtual
host so that it can process the request relative to that collection of files rather than its default
collection of documents.

4 R as a Web Client – the RCurl package

The third line is blank and that signifies the end of the header information for the HTTP
request. Each request (and response) consists of a header and an optional body. The header
information contains the request action as the first line and then a sequence of name: value
pairs that parametrize the request. Each line is terminated with a control-linefeed combination
i.e. the characters \r\n.
Given the complete header in the example above, the server can then process the details and
will return its result as a collection of bytes. The response, like the request, starts with a
header and is followed by the body of the response. In our example, the header looks like

1 HTTP/1.1 200 OK
Date: Sun, 13 Mar 2005 15:38:26 GMT
Server: Apache/2.0.52 (Unix)
Last-Modified: Thu, 13 Jan 2005 18:39:10 GMT
ETag: "e6b33-f43-3bd62f80"
Accept-Ranges: bytes
Content-Length: 3907
Content-Type: text/html; charset=ISO-8859-1

9

Again, the header is terminated by the presence of a blank line (numbered 9). It is also made
up of a first line describing the dialect of HTTP and its status (200 OK). The name: value
pairs provide information from the server to the client about the response. They contain
information about the body of the response which is the content of the requested document
and how to process it. From the Content-type field, we know the body is text containing
HTML. We know the encoding character set (ISO-8859-1), and we know how many bytes
there are (3907). We also have information about the Web server and what software it is
running. There are many possible fields in the request and response headers and this gives
HTTP its flexibility. The interested reader is referred to Fielding, Gettys, Mogul, Frystyk,
Masinter, and P. Leach (1999). More important for this paper than the details of the different
parameters is the knowledge that HTTP supports a rich set of controls, and applications may
need to provide and interpret these in different ways. In this respect, a flexible interface that
obviates the need to know the details, but that still provides access to them is important for
general use in many different contexts.
Having processed the response’s header, the client software can then read the body and do
what it wants with that data. It may display it in a browser, read it to extract links to other
documents, display it as an image, or call additional software to process the data. The body
of the response may come as a single sequence of bytes, or may be “chunked” and provided in
segments. In this case, each segment identifies the number of bytes it contains and the client
software is responsible for handling it appropriately and then looking for the next chunk. This
is a tedious process that requires additional code to recognize the presence of chunks in the
response (encoded in the header) and then to identify each successive chunk and combine the
result into a single block of data for general processing. We want this to be transparent to
the R programmer and end-user, but still allow advanced applications to take advantage of
this when efficiency is an issue.
Retrieving documents is relatively easy with this protocol. As we have seen, the only elements
that change are the host and file name. In addition to existing documents, we can also use
HTTP to request dynamic or conditional content. HTML forms allow us to use our Web

Journal of Statistical Software 5

browser to specify user-level inputs to an HTTP query. We select items from a menu, click
on checkboxes and radio buttons and then submit our request via a button. In the simplest
style of form, the browser sends the HTTP query in exactly the same way as a regular request
for a document. It uses the GET action and specifies the name of the script associated with
processing the form as the target document. It includes the user-specific information from
the form by appending it onto the file name. Instead of /RCurl/index.html, it would include
name=value pairs from the form in the URI (Uniform Resource Identifier) being requested.
These name=value pairs are separated from each other by the ‘&’ symbol, and separated from
the file name by a ‘?’. For example, to send a request to a script file named /apps/myForm
with two variables named first and last, the browser would construct the query

GET /apps/myForm?first=Duncan&last=Temple+Lang

Note that the space in the value of the last field (Temple Lang) is “escaped”. Spaces are
converted to the character ’+’, and non-alpha-numeric characters are represented by their
hexadecimal position in the character set. Additionally, the client should indicate to the
server that this HTTP request is for a form by adding

Content-Encoding: application/x-www-form-urlencoded

to the request’s header.

2.1. POST and Data in the HTTP Request Body

The above method for sending user-specific information in the request is limited in several
ways. If we want to upload the contents of a file in the request, the query string for the
document name could be very long. Additionally, binary data would require special handling.
And files that contained ’?’ or ’&’ symbols would completely confuse the Web server. These
would have to be escaped in some way to ensure the server did not recognize these characters
as parameter separators. Since this is a clumsy way to send arbitrary data, the designers
of the HTTP specification provided a better alternative. Instead of using the GET action,
HTTP provides the POST action which allows information in the request to be sent as part
of the body, and not in the header. In this way, just as the response we saw earlier when
requesting a document contains the data in the body as described in the header, the client
software can use a header and body to transmit arbitrary, more complex data than we have
seen so far to the Web server in the HTTP request. This is far more general, but of course
uses a different mechanism from the GET method described earlier.

2.2. Persistent Connections

One of the aspects of HTTP that was noted after a few years of its use was that a lot of the
time in sending and receiving a request was consumed in establishing the connection to the
server. A Web browser might fetch a page containing references to k images (e.g. with the
). When rendering this page, the client would have to fetch each of
these images, and it would have to fetch the document and each of the k images in separate
HTTP requests. The total download time for the “page”, i.e. these k + 1 requests, was large
because of the need to connect to the server k+1 times. Version 1.1 of the HTTP specification
allows for persistent connections so that a client and server can maintain an open connection

6 R as a Web Client – the RCurl package

without the need to re-establish it for each request. The use of persistent connections can
yield dramatic speedups in the context of numerous short requests. Of course, there are a
multitude of parameters controlling how and how long the connection remains open. The Web
server needs to know when it can reasonably expect additional requests and communication
and how long it should keep the channel open before “hanging up”. Again, we want the option
to control these settings, but not to require such information.

2.3. Secure Communication via HTTPS

We are familiar with submitting private information via HTML forms when, for example,
buying airplane tickets or paying bills. And we also expect this information to be secure
so that others cannot intercept it and commit identity theft. To this end, we use HTTP
requests over SSL, a secure socket layer. SSL is a procedure developed by Netscape precisely
for the purpose of submitting HTML forms securely, but that also applies far more generally
to any communication using sockets. Essentially, HTTPS amounts to encrypted HTTP using
asymmetric keys.

libcurl provides transparent access to secure HTTP using the https protocol qualifier in
the target URI. User’s don’t have to specify any other details. However, they can specify
a variety of different options controlling the use of SSL. For instance, they can specify the
different version level of SSL support that is to be used in the different protocols. Similarly,
there is support for specifying the location of the collection of trusted certificates to use when
establishing a secure connection.

2.4. Authentication

HTTPS is concerned only with ensuring that others cannot see the content of the HTTP
transmission. It is not concerned with verifying the identify of the client to the server. By
sending a credit card number over HTTPs, I am not validating that I am the holder of the
credit card, but merely ensuring that others cannot intercept and obtain the credit number
via this communication. Authentication on the other hand involves the client and server
verifying that the user is who she claims, or specifically that they have the right to use the
resources based on how she identifies herself. This is typically done by sending an identifier
and password of some form. There are several different mechanisms in use such as basic
(plain text), digest, GSS-Negotiate (supporting Kerberos) and NTLM. Again, libcurl, and
by transitivity RCurl, provides support these.

2.5. Cookies

Cookies are used in an HTTP conversation (or repeated requests to a server) by the client
and server to provide state information across the requests. Cookies allow a server to send
information in an HTTP response that the client will then send back in subsequent requests,
thus preserving state. These are sometimes used to identify the client as being the same
individual. A server might send a particular cookie when a user “logs in” and then use
that cookie to lookup personalized information such preferences or billing information in
subsequent requests. For security and privacy reasons, cookies are only sent by the client to
the server that issued them. Thus, one has to manage the collection of all the cookies for
different servers in the “cookie jar”. Again, libcurl takes care of this for us but allows us to

Journal of Statistical Software 7

control the details as we need.

Again, the details are not important for us in this paper. What is important is to understand
that there are very many different options for HTTP both in sending a request and receiving
a response. We need to have a way to control the entire communication, but also ignore
the options that we don’t need to control in any particular interaction. We need to be able
to specify the header information for a request, include content within the body, and be
able to process responses in flexible ways. And we want the underlying software to do as
much of the detailed work as possible, such as escaping characters, dealing with chunked
segments, handling details of passwords, cookies, etc. A list of features for which we need
both transparent support and options to control the details include

• secure, encrypted connections,

• authentication and password files,

• management of cookies,

• proxy servers,

• customizable HTTP request headers,

• redirections for re-located or aliased URIs,

• different protocols such as FTP, LDAP,

• resuming downloads from a specified offset,

• creating connections with different timeouts, persistence, etc.

Few users will require more than a few of these features, but different users will require each
of these as the range of applications increases.

3. Basic Functionality

The RCurl package provides an interface to the libcurl facilities. libcurl is, as the name
suggests, a library programmed in C that provides portable tools for accessing URIs via HTTP
requests and other protocols. It is feature rich, providing options for controlling almost all
parts of the HTTP dialog. The RCurl package provides a high-level, more convenient access to
the functionality in libcurl itself. In this section, we describe some of the RCurl functionality
and the basic style of interaction. We will not cover in detail all the possible options that one
can use. These are better left to the documentation pages of the R help files and libcurl itself.
Users are encouraged to use the help facility in R and also to read the libcurl documentation
available at http://curl.haxx.se/libcurl/c/

There are three high-level functions in RCurl: getURL(), getForm(), and postForm().
Each of these functions sends an HTTP request and expects a document in response. The
functions differ in the type of document they retrieve and how, but each takes a URI and
accepts a large and the same collection of options to customize the request and control the
processing of the result.

http://curl.haxx.se/libcurl/c/

8 R as a Web Client – the RCurl package

3.1. Getting URIs

The most common use of HTTP is to download static or “fixed content” files. The function
getURL() or getURI() provides a simple mechanism to do this. It takes the URL/URI
in the usual form: protocol://server/file/name. The protocol will typically be http, but
ftp - the File Transfer Protocol - is also supported by libcurl and hence RCurl. Similarly,
HTTPS, FTPS, TFTP, GOPHER, TELNET, DICT, FILE, and LDAP protocols are sup-
ported (assuming the necessary supporting libraries are available). The server is the name
of the Web server machine and can be given by name or IP address, e.g. 169.237.46.32.
And, of course, we next identify the name of the file we want, giving the sequence of direc-
tory names separated by ‘/’ symbols. If the Web server uses on a non-standard port (i.e.
other than 80), one can specify the port after the ‘:’ separating the host and file names, e.g.
http://www.omegahat.org:8080/index.html.

We can fetch the main Web page for the RCurl package with the R command

w = getURL("http://www.omegahat.org/RCurl/index.html")

The getURL() function uses the RCurl and libcurl facilities to send the HTTP request and
receive the answer. It collects the body of the response into a single string and returns that.
In our command, that string is now available in the variable w. It contains the source of the
HTML page for the index.html file.

Note that the conversation between the client and Web server all takes place in exactly the
way we described earlier. The client sends the GET request along with information in the
HTTP header and then receives the response as a header and body. However, getURL()
has hidden all of these details, and the default behavior does the correct thing in most cases.

In the simple call to getURL(), the return value is the content of the body of the HTTP
reply, i.e. the contents of the requested document. This is is given as a single string, i.e.
an R character vector of length 1. One can then process this value in whatever way is
appropriate, e.g. read data using read.table() or scan(); parsing HTML or XML using
htmlTreeParse() or xmlTreeParse() Temple Lang (2006d). RCurl has processed the
response, identifying the necessary details from the response header and combining the body
into a string whether it arrives in chunks or not. As we will see later, we can customize both
the sending of the request and the processing of the response at various levels. However, we
do not have to for basic requests.

3.2. Forms

There are two functions in RCurl that can be used to submit HTML forms via HTTP:
getForm() and postForm(). These correspond to the two different ways of submitting
a form: GET and POST. As we discussed in section 2, HTML forms allow the user to
dynamically specify values for different input variables in the request via menus, checkboxes,
etc. The client software encodes the variable name=value pairs in the HTTP request. For
forms using the GET action, the name=value pairs are appended to the URI, separated by
‘&’. For forms using the the POST action, the name-value pairs are encoded in the body of
the request. How this is done involves separating the sections of pairs of name and value lines
by a boundary string which is identified in the request’s header. This string must not occur in
any of the names or values and so must be dynamically generated and validated. Fortunately,

http://www.omegahat.org:8080/index.html

Journal of Statistical Software 9

these two functions hide all of the details of composing the query. For each, we just specify
the URI of the form and then a collection of name-value pairs for the form variables given as
a list or via the . . . mechanism in R.

The Google search engine is perhaps the most widely known and used HTML form. We can
programmatically send a query using the following R command1:

getForm("http://www.google.com/search",
q ="RCurl",
hl = "en", ie = "ISO-8859-1", oe = "ISO-8859-1",
btnG = "Google+Search")

This submits the query with the single search word “RCurl”. The other arguments provide
context for the query to Googles search script giving the desired input and output encoding
and language. The result is the HTML text that contains the search results in the usual
format.

How do we find the names of the parameters and the appropriate values for the form sub-
mission? We can do this by examining the HTML source of the Google front page. Alter-
natively, we can take the information directly from the browser’s URL bar after the query
has completed. (We make use of the former approach in an other package HTMLForms to
programmatically generate R functions that represent interfaces to Web forms and use RCurl
to perform the queries.)

The postForm() has the same user-level interface and only differs in how the underlying
HTTP request is formed.

3.3. Options controlling the request

At this point in our description, the functions getURI() and getForm() provide the same
basic functionality that is already available in R, except that they add support for various
different protocols such as HTTPS, FTPS and handle various aspects such as chunked re-
sponses. But the infrastructure provided by RCurl and libcurl allows us to customize each
of these functions with numerous parameters that govern the HTTP request and response
and how they are sent and received.

The RCurl package provides facilities at several different levels of complexity and control.
The three functions in the simplest interface will suffice for most end-users. These allow the
caller to download the contents of URI, and get or post a dynamic “form” request. For these,
the only inputs that are needed are i) the URI of the document or script on the remote Web
server, and, ii) for forms, the name = value pairs given as R arguments to the getForm() or
postForm() functions. All the details of the HTTP dialog are handled by RCurl package
and libcurl.

At the next level of complexity, the caller may want to specify additional information to
govern the HTTP request. For example, some Web sites reorganize the files and directory
structures and move files to different places on the Web server. This would causes problems
for clients attempting to access the files that are no longer located in the original place. So the
Web server can reply to the request that the page has moved and include the new location

1Note that one is not supposed to do this regularly using this approach, but rather use the Google pro-
gramming interface.

10 R as a Web Client – the RCurl package

as part of the header of the response. We could write R code to handle this response by
examining the header and follow the “redirection”. Fortunately, libcurl does this for us, and
we can enable this facility using the followlocation option to its HTTP request mechanism.
We can specify this option in our call to getURL() as a regular named argument (via the
. . . mechanism), or to getForm() and postForm() via the .opts argument. In the case of
followlocation, we want to pass a value of TRUE or 1 (or some non-zero value) to enable that
option. We can do this via either of the commands:

getURI(followlocation = TRUE)
getURI(.opts = list(followlocation = TRUE))

When submitting forms, one must use the .opts argument for specifying settings for the curl
request. This is because the name-value pairs for the content of the form submission itself is
specified via the . . . argument and so we cannot mix the two sets of inputs via the variable
arguments mechanism. So the .opts argument works as a way to specify options for the
HTTP request for all the relevant functions in the RCurl package. For functions that accept
curl options in both the . . . and .opts forms, the two sets of options are merged into a single
list of options. For an option that is present in both sets, the value in the . . . will be used.
This is convenient for interactive use when overriding values in a set of defaults options given
as a single R object.

In addition to providing a single, consistent parameter across the different RCurl functions,
using the .opts to specify a list of options is convenient when developing code that dy-
namically creates the list of options (rather than simply passing it from the caller to RCurl
functions). Being able to pass the options as a single argument in the form of a list avoids
programming gymnastics and indirect calls to put these back in the form of multiple, separate
arguments to be handled via the . . .mechanism. The .opts parameter is also useful when the
function has a . . . parameter of its own that is used for different purposes, e.g. specifying an
arbitrary collection of URIs to download via the . . . , with options controlling the centralized
download in a different argument.

3.4. The Request Options

At the time of writing this article2, there were 113 options that could be specified for a a
curl request. These control a wide range of different aspects of how the request is submitted
and how the response is processed as it is received. These correspond to the C-level options
described in the libcurl documentation pages Stenberg and the cURL development team
(2006). The names in R are direct mappings from the C-level names using the following rule.
In R, the CURLOPT_ prefix is removed, the word is converted to lower case, and underscores
() are replaced by periods (.). For example, CURLOPT_NETRC in C becomes netrc in R, and
CURLOPT_NETRC_FILE in C becomes netrc.file.

The names of all the options are dynamically available via the R function listCurlOptions().
The options fall into several categories (taken from the libcurl documentation):

2Version 7.15.3 of libcurl.

Journal of Statistical Software 11

Behavior controls diagnostic output, whether process-level signals are handled by libcurl;
Network target URI, proxy information, network interface and IP resolution parameters;
Connections controls for the socket connectivity between the client and the server;
Authentication passwords
HTTP & FTP parameters controlling the behavior of sessions using these protocols;
SSL facilities for controlling the use of SSL and digital certificates;
Callbacks event handler functions for dynamically interacting with libcurl (see next section).

We will not describe all the options here in this paper as they will become outdated and will
merely be a duplicate of the documentation accompanying libcurl and on its Web site.

Generally, there is a one-to-one mapping between the options available in libcurl and those
specifiable in RCurl. There are certain ones which don’t make as much sense for the R interface
such as specifying the error buffer which libcurl will use for making human-readable error
messages available in the event of an error. This is a C-level data structure and while we can
provide an interface to it from R, the RCurl package automatically handles reporting errors.

While there are many options, they are easily grouped into different categories such as HTTP,
FTP, network, authentication and this is done in the libcurl documentation. Perhaps the
group that needs most explanation in the context of R is the collection of callbacks.

3.5. Callback Options

The value of so-called “callback” options are typically specified in R as an R function. These
functions, if specified, are then invoked by libcurl when certain events occur that correspond
to that option. In essence, we are passing a function to libcurl which “calls back” to R by
passing control to that particular function, providing it some inputs which give context to the
particular event.

There are several callback options in RCurl corresponding to different events in libcurl.
These are

1. writefunction,

2. headerfunction,

3. debugfunction,

4. progressfunction,

We will give a brief description of how to use each of these.

writefunction When libcurl processes a response from a request, it reads the header and
then makes the body of that response available to the caller by invoking a C routine
or function specified as the value for the writefunction. It is called writefunction as, to
libcurl, it needs to write the blocks of text in the body to a particular place. For each
block of text libcurl receives, it calls the function and provides the text of this part of
the response as a string. In RCurl, we specify an R function for this option. Each time
libcurl has data from the response, it calls this function. It is called with a single value
which is the string giving the current segment of the response. The function can have
additional arguments, but these must have default values.

12 R as a Web Client – the RCurl package

The R function given as the callback for the writefunction option is expected to return
either a logical value indicating whether it was successful (TRUE) or not (FALSE). Alter-
natively, it can return the number of characters that were processed. If this is not the
same as the number passed to it, libcurl will raise an error and terminate the request.
Alternatively, if the content is not meaningful to the R function or causes problems, the
function can raise an error itself via the R function stop(). Thus there are two different
ways to stop the processing of a request: an error in the R callback function, or simply
returning FALSE. The former does not return control back to the libcurl routine that
invoked the R callback and so RCurl does not have an explicit opportunity to cleanup
the connection to the Web server, etc. at that point. Returning FALSE does provide
libcurl with an opportunity to exit more gracefully. Both approaches are appropriate
in different circumstances.

The function basicTextGatherer() in the RCurl package provides a generic and sim-
ple implementation for collecting the text of the body of a response. When one calls
basicTextGatherer(), it returns a list containing three functions. The update element
can be supplied as the value for the writefunction callback option. When the processing
of the response has been completed, a call to the function in the value element of the
list will return the full text of the response. This is illustrated with following simple
sequence of commands:

g = basicTextGatherer()
getURI("http://www.omegahat.org", writefunction = g)
g$value()

If we want to accumulate responses from a series of calls, we can use the same instance
of this list of functions returned from a single call to basicTextGatherer(). Also, we
can use the same function objects but clear existing text by calling the reset element of
the list to reinitialize the text to the empty string and discard previously collected text.
And of course, we can create separate instances of these functions with separate calls to
basicTextGatherer() and use these for processing different responses independently
of each other.

Note that these functions will not be able to handle binary data. We use C routines for
that currently which can be specified from R via the writefunction in a similar manner
(see below).

The basicTextGatherer() is, as the name suggests, quite basic. It merely combines
the different blocks as they are passed to the function from libcurl. It is entirely
possible to do more interesting processing of the content at this point. For example,
we could extract data values from the text and add them directly to a vector or data
frame as we receive them. This avoids accumulating the text and then at the end of the
request converting that into the values in one large operation. This allows us to avoid
the overhead of having two copies of the data in memory when we convert it, i.e. the
text and the extracted values.

We can also specify a function for the writefunction option that filters content as it is
encountered. For example, if the request consists of lines of a Web log file, we might
only keep those records that satisfy a certain criterion, e.g. requests for a specific page,

Journal of Statistical Software 13

or in a particular period of the day. This form of asynchronous callbacks is thus similar
to streaming data.

headerfunction The writefunction is used by libcurl to pass the content of the body of
the response back to the client. By default, this content does not include the header
information of the response. We can arrange for libcurl to combine the two using a
non-zero value for the header option. However, then we end up with two separate pieces
of text that we have to manually separate. Instead, we can use the headerfunction in
much the same way as the writefunction to provide an R function that will be invoked
with the contents of the response header only. This allows us to gather the header and
body separately.

Since the header is typically quite short, it is common that the callback function will
only be invoked once with the entire text of the header. However, this is not guaranteed.
One can make use of the basicTextGatherer() function again to collect the text across
the calls to the callback function. The function parseHTTPHeader() is available to
then convert the entire text of the header into the name-value pairs and also process
the first line of an HTTP request and return the action, status code, etc. The function
basicHeaderGatherer() is a marginally more convenient variant of these two steps.
The value function it returns will automatically call parseHTTPHeader() and return
the value. This can be used as

d = basicHeaderGatherer()
body = getURI("http://www.omegahat.org/RCurl", headerfunction = d)
d$value()

Being able to process the header dynamically before the body of the response is retrieved
allows us to collect information from the header settings that will allow us to prepare
for processing the body via the writefunction. For example, we can determine the type
of content - simple text, HTML, XML or binary data - and communicate this to the
writefunction callback function. Or we might be able to determine the size or type of the
data structure for the body and preallocate it in order to save memory when processing
the body

debugfunction Occassionally, requests will fail or return data that seems wrong or incom-
plete. One can, and should, enable libcurl’s diagnostic mode via the verbose option
which causes it to output information to the console about what it is doing, showing
the request and the response headers, and more. To get even more information, we
can specify a callback function for the debugfunction option which libcurl will then
use when it has information to share. It calls this with three arguments: the message
text; the “topic” of the notification which is one of text, headerIn, headerOut, dataIn
and dataOut; and a reference to the curl object performing the request. The function
debugGatherer() is a simple version that collects the information from the different
types in their respective collections. This removes the order, but makes it easy to see
what happened in the different streams. R users can specify other functions to pro-
vide different information, compare messages with expected values in the inputs to the
request, and so on.

progressfunction Some requests may take a considerable length of time to complete. It
can be helpful to be notified about the progress of the request. We can then provide

14 R as a Web Client – the RCurl package

feedback to the user and tell them how long they might have to wait. We can display a
message on the console or update a graphical user interface, for example, although this
requires interaction with an event loop to update the GUI display.

This callback option allows us to specify an R function that will be called at regular in-
tervals while libcurl is processing the request. It is called with two arguments providing
information about the number of bytes for both upload and download. Each argument
is an integer vector with two elements: the total for the request and the number of bytes
up to this point in the processing of the request. When specifying a callback for this
option, one must also set noprogress to FALSE.

C routines and R functions are quite similar in concept. Typically, R users will provide an
R function as the value of a callback option in RCurl. These are relatively easy to write
and modify, and using closures allow one to manage mutable state across successive calls.
However, for efficiency and flexibility reasons, it is also useful to be able to specify the address
of a C routine and have that be used directly. This avoids converting data from C to R for
the function call, and sometimes this is important, e.g. when dealing with binary content.
Additionally, it allows for the reuse of existing code in C libraries.

While most uses of callback options will provide an R function as the action, we can also
specify compiled routines which will then be invoked by libcurl in the same manner as the
R functions. In R, we can explicitly reference C routines in DLLs that have been loaded
during the session. The function getNativeSymbolInfo() takes the name of the routine
and the name of the DLL (dynamically loadable library) in which it is located and returns
information about that routine. This information includes its address in memory. This object
can be passed to the curl handle as the value of the particular option. The RCurl compiled
code is set up to differentiate between a function and a native routine and handle them
appropriately. Let’s suppose we had written a routine named readBinaryData which reads a
particular form of binary data, e.g. a particular type of micro-array gene expression data, and
that we have dynamically loaded the compiled code into R from the DLL named myDLL. To
establish this as the routine that libcurl will call as it receives the response from the request,
we can use the command

getURI("http://....",
writefunction = getNativeSymbolInfo("readBinaryData", "myDLL")$address)

This facility is especially appropriate for the ssl.ctx.function and the readfunction options as
the callback functions may have to work with low-level C data structures.

Precisely how we retrieve the result after libcurl has completed the request is up to the
author of the native routine. One might use a global variable in the native code and have a
routine that could be called from R to access the data after the request finishes. The libcurl
programming interface also allows one to set the callback routine along with a corresponding
DATA option, e.g. WRITEDATA. The value provided in the DATA option is passed to the
callback routine when libcurl invokes it. It therefore acts as a way to parametrize a single
routine for use in multiple contexts. We use this option internally in RCurl to associate the
R function with the internal callback routine. These options are not for use in the RCurl
package when specifying an R function as a callback. Note however that no attempt is made
to prevent one setting these options. They are useful when specifying C routines as callbacks

Journal of Statistical Software 15

and associating a particular instance of a data structure that is specific to this request. This
allows us to avoid the use of global variables.

There are several other callback options, specifically readfunction, ioctlfunction, ssl.ctx.function
and three conversion functions. Currently, the RCurl package does not allow one to specify
an R function as the value for these. For each of these, one can specify a C routine to be
called and use the corresponding DATA option to add a value that will be passed to the rou-
tine. These options are only amenable to C routines at this point as they deal with low-level
native data structures in C which currently do not have R interfaces. This might change with
the ability to programmatically generate the bindings to the relevant libraries. Fortunately,
we typically do not need to supply callbacks for these options as the computations can be
preprocessed in R. For example, the readfunction is used when libcurl requires input that is
to be sent to the server as part of the request. This might occur, for example, when uploading
a file. In this case, the caller can read the contents of the file directly into R and pass it as a
string via the postfields option.

3.6. The Computational Model in RCurl

Aside from the three high-level functions – getURI(), getForm() and postForm(), the
interface presented in RCurl mirrors that provided by libcurl with some facilities added to
make the programming easier for the R programmer than those using the C interface. libcurl
provides an opaque data for performing HTTP requests. In RCurl, we refer to these as “curl
handles”. Each curl handle has a collection of options or settings that it uses to perform an
HTTP query. Each of these settings persists within the handle until it is updated with a new
value or, of course, the handle is discarded and garbage collected by R. These settings allow us
to control very many aspects of how the handle process the HTTP request and response. The
low-level model is that we set the the options of interest such as the target URI, new fields
to be added to the header, user name and password, location of SSL certificate files, callback
functions to read and write content involved in the query, etc. Most queries will involve
setting only a few of the 113 supported options. Once the options are set, one instructs the
handle to issue the query and get the response. In the functions getURI(), getForm() and
postForm() as with several other functions in the package, a curl handle is created implicitly
within the function call (as a default value for the curl argument) and persists only for the
duration of that function call.

We can create a new, default curl handle using the function getCurlHandle(). This gen-
erates a new libcurl data structure, sets the options to their default values and returns an
opaque reference to the internal handle as an R object. Unlike the libcurl API, we can also
set options in the new handle in the same call that creates it, e.g.

h = getCurlHandle()
h = getCurlHandle(followlocation = TRUE)

We can also create a new curl handle by duplicating an existing one using the function
dupCurlHandle(). This is useful if we have set options in an existing handle and want to
continue to use it but also want to make requests with a slightly different set. Rather than
creating a new handle and re-setting the options we previously had to specify, we can inherit
them from our original handle. And we can also override settings in the new handle within
the call to dupCurlHandle() via the . . .mechanism and .opts parameter.

16 R as a Web Client – the RCurl package

The options remain in effect for a given curl handle across requests and until that handle is
no longer in use. So we can, for example, merely set the target URI to a new value via the
url option and perform a different request with all the same settings as before. For example,
the following code downloads 2 documents in succession using the same handle:

h = getCurlHandle()
getURI("http://www.omegahat.org/RCurl/index.html", curl = h)
getURI("http://www.omegahat.org/RCurl/Changes.html", curl = h)

This saves us (implicitly) creating a new handle for each request and setting all the shared
options repeatedly. Additionally, if the curl handle is set to use persistent connections and (a
subset of) the series of requests are to the same server, there can be significant performance
gains by reusing the same handle and avoiding the overhead of reconnecting to the server.
Using the same handle across requests is not necessary in usual operations since getURI()
is vectorized and will work on multiple documents, but the basic point of creating a handle
and using it in multiple operations is generally important for advanced use.

The RCurl package simplifies the sequence of steps inherent in the libcurl API, primarily
because of the default argument mechanism in R. Rather than creating the handle, setting
the options, and performing the request as three separate actions, one can combine them
into a single operation. The functions getURI(), getForm() and postForm() allow us to
specify the options and the curl handle as inputs, with suitable defaults for those that are
not specified, and these functions perform the HTTP request and processing of the response.
These three functions are based on the slightly lower-level function curlPerform() which,
as the name suggests, actually performs the request. It is the bare interface that takes a
handle and any curl options and performs the query. This is the most flexible interface to
the basic libcurl facilities and allows us to reuse existing handles or implicitly create a new
handle for the particular request. The example of downloading the two URIs can be done
with curlPerform() as

h = getCurlHandle()
curlPerform(uri = "http://www.omegahat.org/RCurl/index.html", curl = h)
curlPerform(uri = "http://www.omegahat.org/RCurl/Changes.html", curl = h)

This does not appear any simpler, but when we have requests that are not simple GET and
POST operations, curlPerform() is needed to create and send the request.

curlPerform() marshals any options to the handle using the other RCurl function setCur-
lOpt(). This function allows R users to explicitly update options settings in an existing curl
handle without actually performing a request. These new settings will be used in subsequent
requests that use this handle.

In some more rare situations, it is useful to be able to specify a set of options to be used by a
handle, but without actually setting them in the handle. Rather, we want an R representation
of the options. curlOptions() is a function that creates such a list of R-based curl options
and validates them by matching the names again those understood by libcurl. These can be
saved between R sessions and used in a call to curlSetOpt() to “restore” an existing handle.
Unfortunately, this is the only way to do this as when a curl handle is serialized in R, the
reference to the opaque libcurl data structure cannot be de-serialized or restored in a new
R session. And also, the libcurl software does not provide a way to query any or all of the

Journal of Statistical Software 17

current values of an curl handle’s options. As a result, we cannot retrieve them and store
them in R to be reused later.

When a request has been processed, libcurl stores information about the processing of that
request in curl handle. This includes information such as the effective URI (after redirects,
etc.), the status of the request, the total time and the times for the different sub-tasks, the
content type and size, etc. Given the curl handle used to make the request, this information
can be retrieved by calling getCurlInfo(). For example,

h = getCurlHandle()
getURI("http://www.omegahat.org/RCurl/index.html", curl = h)
names(getCurlInfo(h))

[1] "effective.url" "response.code"
[3] "total.time" "namelookup.time"
[5] "connect.time" "pretransfer.time"
[7] "size.upload" "size.download"
[9] "speed.download" "speed.upload"
[11] "header.size" "request.size"
[13] "ssl.verifyresult" "filetime"
[15] "content.length.download" "content.length.upload"
[17] "starttransfer.time" "content.type"
[19] "redirect.time" "redirect.count"
[21] "private" "http.connectcode"
[23] "httpauth.avail" "proxyauth.avail"

This is useful in several ways. For one, it allows us to change subsequent repeat queries to the
actual URI if it is different from the nominal URI. Also, it allows us to measure the different
characteristics of our communication and potentially dynamically understand the operating
characteristics of our software that uses the HTTP requests and optimize it, if this is relevant.
Of course, we have to create the curl handle separately rather than rely on a default handle
being created so that we can pass that same handle to getCurlInfo().

3.7. Multiple Requests and Handles

As we have described, we can create numerous separate curl handles to process different
requests and reuse a handle for a succession of multiple requests. This gives us a lot of
flexibility in programming network requests in R. However, when we perform a query in R
either directly using curlPerform() or a higher-level function, control is passed to libcurl
and R must wait until that request has completed. If we have multiple documents to retrieve,
we must do them sequentially if using the curl handles as described earlier. However, it is
easy to see that if a Web server is responding slowly, or if resolving the Internet Protocol (IP)
address of a server from the given name takes a long time because of a slow domain name
server (DNS), then R and libcurl can potentially spend a lot of time idle. If libcurl could
be given several requests at once, then it could send them concurrently and then check back
on each of them to see how they were progressing. A slow Web server would not inhibit the
speed at which the other requests were being processed. This is a form of multi-tasking with
which we humans are familiar. It does not necessarily involve a multi-threaded programming

18 R as a Web Client – the RCurl package

model (although libcurl supports that), but rather an ability to manage multiple requests at
the same time and be able to interleave the processing of these requests. RCurl provides an
interface to libcurl’s “multi” interface for processing multiple requests concurrently.

This multi-request interface uses much of what we have discussed so far. Essentially, we create
each of the different concurrent requests in much the same way as before by creating a regular
curl handle via getCurlHandle() and setting the options in that call or in subsequent calls to
curlSetOpt(). At any point in time, each of these curl handles will process a single request.
(We can reuse a handle when its request is complete.)

Next, we create a "MultiCURLHandle" object that can manage these different requests using
the function getMultiCurlHandle(). And we add each of the simple curl handles that
we want processed to this multi-handle. We add these using the generic function push().
When we have added the initial set of request handles to the multi-handle manager, we can
call curlMultiPerform(). This then hands control to libcurl which processes the requests.
When any one of these requests is complete, it returns control back to the R caller, telling how
many requests still remain to be completed. This gives us an opportunity to do something in
response to the completion of the request. Alternatively, if we just want all the requests to be
completed, we can call curlMultiPerform() with the multiple argument given as TRUE, or
more conveniently simply call the generic complete() function. This will then only return
when all the requests have been completed.

Just as we can add regular curl handles to the multi-handler manager, we can also remove
them at any time. We use pop() for this. Both pop() and push() return an updated R
object containing the managed curl handles. So it is important to reassign that value to an
R variable, typically the one containing the original value of the curl multi-handle.

Also, when a request associated with a particular handle is complete, we can reuse the handle
to issue another request. It is simplest to first pop() that handle and then set the options
for the new request and push() it onto the multi-handler again.

This multiple request interface is very powerful. We will see how to use it in more detail in
the case studies in section 5.

3.8. Additional RCurl Functions

It is often useful to know which version of curl, etc. we are using. The function curlVersion()
provides information about the version of libcurl installed on the particular machine. This
reports on the version of the libcurl library, the type of host, the features supported in this
particular installation of libcurl such as IPV6, SSL, support for largefiles, etc. It also lists
the supported protocols and whether asynchronous host name resolution is used. An example
of the output is

curlVersion()
$age
[1] 2

$version
[1] "7.15.3"

$vesion_num

Journal of Statistical Software 19

[1] 462595

$host
[1] "powerpc-apple-darwin8.6.0"

$features
ipv6 ssl libz ntlm largefile

1 4 8 16 512

$ssl_version
[1] " OpenSSL/0.9.7i"

$ssl_version_num
[1] 0

$libz_version
[1] "1.2.3"

$protocols
[1] "tftp" "ftp" "telnet" "dict" "ldap" "http" "file" "https"
[9] "ftps"

$ares
[1] ""

$ares_num
[1] 0

$libidn
[1] ""

The result is a list with 12 named elements detailing the different information. This is a
regular R object. This information can be used by high-level functions to determine how to
perform a query. For example, if secure HTTP (HTTPS) is not supported, an alternative
approach may be used.

The package also provides some miscellaneous functions that are useful for dealing with HTTP
requests. As we mentioned when describing HTTP, certain characters in a URI need to
be transformed into a different representation. Non-letter characters and so-called “foreign”
characters cannot be uniformly expressed in a string on all different computer systems as
simple characters. Before being sent in a request, the function curlEscape() can be used to
transform a string to its “escaped” form with the non-character elements translated to their
hexadecimal representation. And curlUnescape() can be used to map such an “escaped”
string back to a regular character string.

4. Examples

20 R as a Web Client – the RCurl package

In this section we take the opportunity to illustrate some of the options that libcurl supports
and how to use them via RCurl. It is in no way meant to be a comprehensive illustration
of all the options. Again we refer the reader to the help pages for the package and the
documentation for libcurlfor more details.

4.1. SOAP

The Simple Object Access Protocol (SOAP) Snell et al. (2002) is a mechanism by which func-
tion calls are sent over HTTP to remote servers. This is the primary mechanism underlying
Web services. It allows us to use functionality in remote servers from within different appli-
cations. It is similar to RPC (Remote Procedure Call), Microsoft’s DCOM (the Distributed
Component Object Model), CORBA (the Common Object Request Broker Architecture) and
Java’s RMI (Remote Method Invocation). What differentiates SOAP from these other ap-
proaches is that it uses HTTP as a simple way to deliver the request and response, even
through firewalls. Additionally, it uses XML to encode the call and the data. To allow R to
be a client of a SOAP server and utilize remote SOAP servers to retrieve data or perform
computations, we need the ability to send HTTP requests in R. And this was one of the
primary motivations for developing the RCurl package.

The details of a SOAP call become lengthy, tedious and complex. These are hidden from
R users via functions in the SSOAP package Temple Lang (2006c). However, it may help
to illustrate the basic mechanism that uses RCurl. We will do so with a very simple test
example as we do not want to focus on the details of SOAP and XML, but rather how to use
RCurl to make the request.

Our example queries the xmethods web service to get the currency exchange rate between the
U.S. dollar and the Irish punt. The service is located at http://services.xmethods.net/soap
and we are calling the getRate method. We will pass the names of two countries - Ireland
and USA - as the two arguments.

SOAP makes requests by using the PUT operation in HTTP, similar to the way POST forms
are sent. The actual request is sent as XML text as the body of the request. In spite of
the similarity to posting forms, we cannot use the postForm() function as that expects
name = value arguments giving the inputs to the form. Instead, we use curlPerform()
directly and specify the different elements of the request as different options for the curl
handle. We thus have to provide both the body of the request and additional fields for the
HTTP request header.

The body of the HTTP request for this method call should consist of the following XML text:

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<namesp1:getRate xmlns:namesp1="urn:xmethods-CurrencyExchange">

<country1 xsi:type="xsd:string">Ireland</country1>

Journal of Statistical Software 21

<country2 xsi:type="xsd:string">USA</country2>
</namesp1:getRate>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SSOAP package would create this text for us, so we need not concentrate on the content
and can assume that it is available in the R variable body, say, as a single string.
The body of the POST operation is given as the value for the postfields option in curl. This
is all that is needed in the body, but to make the request work however, we need additional
fields in the header which are mandated by SOAP.
The outgoing header should end up looking something like

POST /soap HTTP/1.1
Host: services.xmethods.net
Accept: text/xml
Accept: multipart/*
Content-Type: text/xml; charset=utf-8
SOAPAction: urn:xmethods-CurrencyExchange#getRate#getRate
Content-Length: 590

We specify the server URI as http://services.xmethods.net/soap and RCurl will gener-
ate the first two lines of the header from this by splitting the host name and document path.
We must also specify the two Accept entries, the Content-Type and SOAPAction fields. These
are specific to our request and not something RCurl can determine. The Content-Length field
refers to how many bytes there are in the body of the POST request and, of course, RCurl
can determine this from the body before sending the request. The Content-Type field indi-
cates to the Web server how the body is formatted. The Accept fields tell the Web server
what formats are acceptable for its response. The SOAPAction field is used to direct the
request through the Web server and onto the SOAP server.
We specify the Accept, Content-Type and SOAPAction header fields via the httpheader ar-
gument for curlPerform(). The value should be a named character vector with each name
element identifying the header entry, and the value of the element giving the value for the
header field.
At this point, we can put the R command together as

headerFields =
c(Accept = "text/xml",
Accept = "multipart/*",
’Content-Type’ = "text/xml; charset=utf-8",
SOAPAction="urn:xmethods-CurrencyExchange#getRate#getRate")

curlPerform(url = "http://services.xmethods.net/soap",
httpheader = headerFields,
postfields = body
)

curlPerform() merely returns the status code of the operation indicating whether it was
successful (0) or not. Instead of this, we want the actual body of the response from the web

22 R as a Web Client – the RCurl package

server. To get this, we need to provide an R function to collect that text. We do this with
the writefunction option for the handle. We can use the basicTextGatherer() in the RCurl
package for this. This function returns a list of functions that share mutable state. The
update element of the list it returns is the function we pass to curlPerform(). When we
want to retrieve the updated state, we invoke the value element of the list which is a function
that simply returns the current contents of the shared string used to gather the text collected
by the update function. So our command is

reader = basicTextGatherer()
curlPerform(url = "http://services.xmethods.net/soap",

httpheader = headerFields,
postfields = body,
writefunction = reader$update
)

reader$value()

The string returned from the value() function contains the result, but encoded in XML and
SOAP. So further processing is necessary.
curlPerform() will claim success if it did its task correctly, but that does not guarantee
that the HTTP request was successful. To determine this, we must look at the header of
the response. To get access to this, we can use either of two approaches. Firstly, we can
set the header in the curl options to TRUE and then the header will be relayed to the write-
function as the first part of the body. A better approach is to collect the text from both the
body and header separately. We supply an R function for the headerfunction argument of
curlPerform(). Again, we can use basicTextGatherer().

reader = basicTextGatherer()
header = basicTextGatherer()
curlPerform(url = "http://services.xmethods.net/soap",

httpheader = headerFields,
postfields = body,
writefunction = reader$update,
headerfunction = header$update
)

We can then look at the text of the response header and determine how to process the body.
The function parseHTTPHeader() breaks the header content into a named list giving the
values of the fields. It also processes the first “status” line and includes the return status as
an integer in the list of header fields. This allows us to tell whether the call succeeded or not,
i.e. had a return status between 200 and 300.

h = parseHTTPHeader(header$value())
h$status >= 200 && h$status < 300

If we are simply interested in the return status of the HTTP request and not the general
contents of the response header, we can use the getCurlInfo() function to query that. We
call this with the curl handle used in the processing of the request. Therefore we have to
create the handle and pass it explicitly to curlPerform() so that we can also pass it to
getCurlInfo() after the request has been completed. We would do this as

Journal of Statistical Software 23

reader = basicTextGatherer()
handle = getCurlHandle()
curlPerform(url = "http://services.xmethods.net/soap",

httpheader = headerFields,
postfields = body,
writefunction = reader$update,
curl =handle
)

status = getCurlInfo(handle)$response.code

We emphasize that there is a much higher-level interface to SOAP client services within R
via the SSOAP package. It hides all the details of the actual call and can also automatically
generate R functions that provide an interface to a server’s methods and data structures by
using reflectance. The underlying code uses RCurl, but users do not need to know how. The
purpose of our example is to illustrate the power and flexibility of the RCurl interface for
non-trivial requests.

4.2. Authentication and Passwords

Some Web sites require a user name and password to access certain files. We can specify this
in a call via the userpwd option for curl. This is a simple string that gives the user name and
password in the form user:password. The Web site for the RCurl provides a test for this.
The user name is ’bob’ and the password is ’welcome’. So we can request the page with the
R command

getURL("http://www.omegahat.org/RCurl/testPassword/index.html",
userpwd = "bob:welcome")

Some people like to keep passwords in a ’netrc’ file, often in their home directory in a file
named .netrc. libcurl can read such files and use the passwords from there. We have to tell
it to use such a file via the netrc option. We pass a value of 1 which indicates that the file
is optional - if it is present, libcurl will read it to find the password, however we can also
specify the password via the userpwd option to override values in that file. Assuming we have
the file .netrc in our home directory and it contains the line

machine www.omegahat.org login bob password welcome

we can use the R command

getURL("http://www.omegahat.org/RCurl/testPassword/index.html",
netrc = "optional")

to access the restricted page. Note that we used the symbolic value ”optional” rather than the
C-level value 1 for the option. We can use either and the RCurl package coerces the value
to the associated enumerated value.

If the password file is not in a standard location, we can use the netrc.file option to specify
its full path:

24 R as a Web Client – the RCurl package

getURL("http://www.omegahat.org/RCurl/testPassword/index.html",
netrc = 1,
netrc.file = "/Users/duncan/.netrc")

libcurl attempts to determine what the authentication mechanism is used by the server.
There are several (Basic, Digest, GSS, NTLM) and we can specify the one to use via the
httpauth option. The best option is ANY or ANYSAFE.

4.3. SSL

We can check whether the particular installation of libcurl and the RCurl package supports
https requests with the command

"https" %in% curlVersion()$protocols

If this returns TRUE, then it does have support for this facility. And then, typically, one need
only use the ’https’ qualifier for a URI to use this encrypted connection.

For some Web servers, the SSL layer will fail to connect to the Web server because it cannot
authenticate that server. SSL uses digitally signed certificates to verify the identity of the
server so as to avoid sending sensitive data to bogus servers. libcurl provides options such as
sslcert to control where the SSL library looks for local certificates that validate a server. In
some cases, we may want to trust a server is authentic even though we do not have a certificate.
For example, to access the Subversion repository for R, we need to avoid validating the host.
We use the two curl options ssl.verifyhost and ssl.verifypeer and set them both to FALSE to
turn off the verification. We also specify the followlocation option to allow libcurl to follow
any redirections to other URIs by the remote server. So the command to access this page is
then

getURI("https://svn.r-project.org/R/trunk",
ssl.verifyhost = FALSE,
ssl.verifypeer = FALSE,
followlocation = TRUE)

There are numerous options that control how the SSL layer connects to the server. Some of
these are technical and require a good understanding of SSL and so are outside the scope
of this paper. Readers are referred to both the libcurl and openssl (www.openssl.org)
documentation for more information.

4.4. Cookies

As we mentioned in section 2, cookies are used by the server to maintain state across sep-
arate transactions with a client. These allow the server to “remember” you in subsequent
interactions. The server sends cookies as name=value pairs in the header of the response (as
Set-Cookie instructions) and the client is expected to manage these and include the cookies
from the target server in subsequent requests. Cookies have an expiration date and also a
path and domain (or host name). A client is supposed to discard a cookie after the expiration
date and replace it with a new instance if the server sends it one. Also, the server can specify
the domain and path for a cookie which associates the cookie with a particular document

www.openssl.org

Journal of Statistical Software 25

or part of the Web site. The client is supposed to send the cookie with any request for a
document within the domain and path. As with many aspects of HTTP, the details of a
simple idea can become complex to manage and so we leave it to libcurl.

By default, libcurl ignores cookies, but we can activate the management and transmission
of cookies by setting one of several options in a curl handle, specifically setting either of the
cookiefile or cookiejar options. These are quite different, but both cause the curl handle to
recognize and manage cookies.

The cookiefile option tells the curl handle to read a collection of cookies from the specified
file. If the file does not exist or is empty, this only has the side effect of making the handle
process cookies. If the file does contain a collection of cookies, these are read and used in
subsequent requests. This allows us to store cookies in a file and use them in a different
R session. The format of the file is described in the document http://www.netscape.com/
newsref/std/cookie_spec.html and looks something like

Netscape HTTP Cookie File
http://www.netscape.com/newsref/std/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

.nytimes.com TRUE / FALSE 1183206005 RMID 8362050d3d9744a516f5a350

.google.com TRUE / FALSE 2147368447 PREF ID=fd3870ecb4a92b03:TM=11516700

Some applications store cookies in an XML format.

The cookiejar option gives the name of a file into which the handle will write its collection of
cookies, but only when it is being discarded and is no longer in use. The idea is that libcurl
will manage the cookies for the lifetime of that handle without our intervention, accepting
new cookies in responses and sending them in subsequent requests. When the handle is no
longer in use, it serializes the known cookies to a file so that they can be read in a future
session or by a new handle. Unfortunately, we cannot query the known cookies in a handle
while it is still in use. To access these, we must discard the handle and cause it to be garbage
collected by R by removing any reference to it (and explicitly calling the garbage collector via
gc()). When the handle is reclaimed, libcurl arranges to write the cookies to the specified
file.

Regardless of whether libcurl is managing cookies or not, one can always manually add one
or more cookie name-value pairs to a request using the cookie option. The cookie value is
given simply as a string of the form name=value. And we can specify multiple cookie values
in the string by separating them with the ‘;’ character. For example, let’s suppose that you
have registered with the NCBI PubMed site (http://www.ncbi.nlm.nih.gov/entrez) and
received an account. At the end of the registration process, the site will typically have sent a
cookie in its response that uniquely identifies you (at least on that machine). Your browser
will be using that in each transaction it has with that site and that is how the Web site
personalizes its pages for you. Using your browser, you can examine the collection of cookies
and hopefully identify the pertinent one. In the case of PubMed, we are looking for the cookie
named WebCubbyUser within the nih.gov domain. We can then pass its value, say ABC1234,
in our R-based request with the command

getURI("http://www.ncbi.nlm.nih.gov/entrez",

http://www.netscape.com/newsref/std/cookie_spec.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://www.ncbi.nlm.nih.gov/entrez

26 R as a Web Client – the RCurl package

cookie = "WebCubbyUser=ABC1234",
followlocation = TRUE)

The resulting document will contain your personal login for that site, illustrating that the
cookie was communicated correctly.

5. Advanced Usage

In this section, we will present some more detailed and sophisticated case studies in using
RCurl. These mainly focus on the use of the asynchronous “multi”-request interface. In the
first example, we explore how we can process the response of a request “on-the-fly” as it is
being received in chunks in order to improve the processing efficiency. Next, we look at how
we can connect the output from a RCurl request as input to an XML parser so that the
parser queries more input from the HTTP request as it is needed. We then focus on making
numerous simultaneous requests that are processed concurrently. And finally, we illustrate
how we can recursively download all linked documents from within a given document in an
efficient manner.

5.1. In-line processing

The basic use of getURL(), getForm() and postForm() returns the contents of the re-
quested document as a single block of text. It is accumulated by the libcurl facilities and
combined into a single string. We then typically traverse the contents of the document to
extract the information into regular data, e.g. vectors and data frames. For example, suppose
the document we requested is a simple stream of numbers such as prices of a particular stock
at different time points. We would download the contents of the file, and then read it into
a vector in R so that we could analyze the values. Unfortunately, this results in essentially
two copies of the data residing in memory simultaneously. This can be prohibitive or at least
undesirable for large datasets.

An alternative approach is to process the data in chunks as it is received by libcurl. If we can
be notified each time libcurl receives data from the reply and do something meaningful with
the data, then we need not accumulate the chunks. The largest extra piece of information we
will need to have is the largest chunk. In our example, we could take each chunk and pass it
to the scan() function to turn the values into a vector. Then we can concatenate this with
the vector from the previously processed chunks.

The write parameter of the getURI() and other RCurl functions allows us to do just this.
We can give it an R function that is called each time libcurl receives data from the HTTP
response from the server. The function is called with a string as the only argument. The
string is the current chunk of data received by libcurl. The function can do whatever it wants
to the content. The function can return a logical value indicating whether it was successful
(TRUE) or not (FALSE). Any other type of value returned is ignored. This allows the function
to terminate the processing gracefully.

The parameter is called write corresponding to the libcurl option writefunction. This
might seem confusing as essentially we are reading data. However, from libcurl’s perspective,
it is writing it somewhere.

In our example, we might write the chunk processor function as something like the following:

Journal of Statistical Software 27

function(chunk)

{

con = textConnection(chunk)

on.exit(close(con))

tmp = scan(con)

}

This arranges to call scan() on the text given by chunk. It is unfortunately slightly more
complicated as we have to tell scan() that the string is not the name of a file, but the text
containing the values. We use a "textConnection" object for this purpose and must arrange
to close that connection when we have finished with it.

The only difficulty with the function we have written is that we have not added these values
to those of the previously processed chunks. We haven’t defined a variable that stores these
earlier values. Unfortunately, we cannot return these new values and expect libcurl to know
what to do with them. Instead, we could use a global variable, but this is rarely desirable.
For example, if we want to read data in this manner recursively, a global variable would be
overwritten for each request. And if there is an error in processing one of the chunks, the
global variable must be cleared or remain in a confused and confusing state.

In R, we can use closures, also known as lexical scoping, to keep the vector from the earlier
chunks in a local variable that persists across the (asynchronous) calls. This is described in
Gentleman and Ihaka (200) and R Development Core Team (2005). The basic mechanism is
to define functions within a function. The interior functions share state and variables defined
in their common environment. So we can define one function that processes the chunks and
stores the values and another that provides access to the results at the end.

stockReader =

function()

{

values <- numeric() # to which the data is appended when received

Function that appends the values to the centrally stored vector

read = function(chunk) {

con = textConnection(chunk)

on.exit(close(con))

tmp = scan(con)

values <<- c(values, tmp)

}

list(read = read,

values = function() values # accessor to get result on completion

)

}

The outer function - stockReader() - is called each time we want to create a new reader
function with its own, separate values vector. There are two interior functions - the one
named read() and the other defined in the list being returned named values. Note the use

28 R as a Web Client – the RCurl package

of <<- in the read() function which modifies the variable values shared by both functions,
and not just a local copy within the call frame of the read() function each time it is invoked.

We can use this code in our call to getURL as follows:

reader = stockReader()

getURL(’http://www.omegahat.org/RCurl/stockExample.dat’,

write = reader$read)

reader$values()

We create a specific instance of the stockReader(). Each instance has its own separate
values variable. We pass the reader() function in the returned list as the write argument
of getURL(). As libcurl processes the chunks, this functions is called for each chunk and it
modifies the variable function. At the end of the call to getURL(), we can get the final
version of values by calling the values() function of reader.

Unfortunately, things are not quite as simple as this. libcurlreceives the HTTP response in
arbitrarily sized chunks. The chunks are not necessarily broken by word or line boundaries.
As a result, two consecutive chunks might be split in the middle of a value. And, of course,
processing such chunks would lead to errors. Instead, we need to ensure that we process entire
words or even lines. The RCurl provides a filter function that can be used to do this. The
function chunkToLineReader() takes the real chunk processor function (e.g. reader$read
above) and arranges to call it with only complete lines. This allows us to do line-at-a-time
processing which is reasonably common for current data formats.

reader = stockReader()

getURL(’http://www.omegahat.org/RCurl/exampleStock.dat’,

write = chunkToLineReader(reader$read))

mean(reader$values())

At this point, reader$values() will return all the data.

The same can be done for reading data frames, matrices and other data formats. Similarly,
we can parse XML documents using this on-the-fly approach as we will discuss in section 5.2

5.2. Connecting RCurl and XML parsers

This example uses RCurl to download an HTML document and then collect the name of each
link within that document. The purpose of the example is to illustrate how we can combine
the RCurl package to download a document and use this directly within the XML (or HTML)
parser without having the entire content of the document in memory. We do not save the
XML document to disk or even to an R variable, but rather arrange for the XML parser to
turn to libcurl when it needs more content to process. We start the HTTP download and
pass a function to the xmlEventParse() function for processing. As that XML parser needs
more input, it fetches more data from the HTTP response stream. In this way, the XML
parser is “pulling” data from the HTTP request in a “just-in-time” fashion. This is useful for
handling very large data that is returned from Web queries. If the HTTP request is simple,
we can make use of the XML parser’s own HTTP facilities and avoid the use of RCurl.
However, if the request requires any non-trivial HTTP features, we need a more advanced
HTTP client.

Journal of Statistical Software 29

To do this, we need to use the multi interface for libcurl in order to have asynchronous
or non-blocking downloading of the document. The steps are quite simple. We initiate the
download and associate a“writer”to gather the body of the HTTP response. This is registered
with libcurl via the write callback option and is invoked whenever libcurl is in control and
is processing the HTTP response. If there is information to be read on the HTTP stream
from the server, this function reads it and appends it to a variable pending.

The second part of this mechanism is that we need a function that is called by xmlEvent-
Parse() which can provide input to the XML parser when it requires content. Of course, it
will use the content coming from the HTTP server that is collected in the function getH-
TTPResponse(). So we create a sibling function of our write callback function that shares
the state of the getHTTPResponse() function and so can access the current contents of the
variable pending. When the XML parser demands some input, our function supplyXML-
Content() checks to see if pending has non-trivial content (i.e. is not the empty string). If
it has some content, it returns that. Otherwise, it tells libcurl to read some more from the
HTTP stream. When it hands control to libcurl in this way, libcurl will invoke our getH-
TTPResponse() function, populating the contents of pending. So when libcurl yields
control, we will now have content to pass to the XML parser.

The only additional issue that we have to deal with in this setup is that the XML event
parser asks for input up to a certain size. We cannot necessarily give it all of the content of
pending. If pending has more characters than the XML parser wants, we must give it the
first maxLen characters and then leave the remainder in pending for the next request from
the XML parser.

The following generator function defines the two functions that do the pulling of the text from
libcurl and the pushing to the XML parser.

HTTPReaderXMLParser =
function(curl, verbose = FALSE, save = FALSE)
{

currently available content from HTTP request
pending = ""

if save = TRUE, holds entire document on completion
text = character()

getHTTPResponse =
function(txt) {

pending <<- paste(pending, txt, sep = "")

if(save)
text <<- c(text, txt)

if(verbose) {
cat("Getting more information from HTTP response\n")
print(pending)

}

30 R as a Web Client – the RCurl package

TRUE
}

supplyXMLContent =
function(maxLen) {

if(verbose)
cat("Getting data for XML parser\n")

if(pending == "") {

if(verbose)
cat("Need to fetch more data for XML parser from HTTP response\n")

while(pending == "") {
status = curlMultiPerform(curl, multiple = TRUE)
if(status[2] == 0)

break
}

}

if(pending == "")
There is no more input available from this request.

return(character())

Now, we have the text, and we return at most maxLen - 1
characters
if(nchar(pending) >= maxLen) {

ans = substring(pending, 1, maxLen-1)
pending <<- substring(pending, maxLen)

} else {
ans = pending
pending <<- ""

}

if(verbose)
cat("Sending ’", ans, "’ to XML\n", sep = "")

ans
}

list(getHTTPResponse = getHTTPResponse,
supplyXMLContent = supplyXMLContent,
pending = function() pending,
text = function() paste(text, collapse = "")
)

Journal of Statistical Software 31

}

The remaining part involves combining these pieces with RCurl and the XML packages to
do the parsing in this asynchronous, interleaved manner. The code below performs the basic
steps

handle = getCurlMultiHandle()
streams = HTTPReaderXMLParser(handle)

uri = "http://www.omegahat.org/RDoc/overview.xml"
getURLAsynchronous(uri,

write = streams$getHTTPResponse,
multiHandle = handle,
perform = FALSE)

links = getDocbookLinks()
xmlEventParse(streams$supplyXMLContent, handlers = links, saxVersion = 2)
links$links()

The steps in the code are explained as follows. We first create a ’multi handle’. This gives us
the asynchronous behavior that returns control back to us from libcurl rather than sending
the request and slurping back all the data in one single atomic action. Next, we create our
functions to do the pulling and pushing of text from HTTP to the XML parser. These are
returned from the call to HTTPReaderXMLParser(). And we then setup the request to
fetch the content of the URI with the call to getURLAsynchronous(). Note that we tell
it not to actually perform the request, i.e. perform = FALSE. We are just setting it up to be
done when the XML parser requests input. This is important as this call must return so that
we can call xmlEventParse()3. The next step is to establish the XML event parser. We
provide a collection of XML element parsing handlers that process the XML content in the
way that we want (see below). And now we are off, and the XML parser will request input
and the functions will read from the HTTP stream.

To process the links within the Docbook document, we are looking for each <ulink> element
and fetching its url attribute. So we can provide a collection of handlers that consist of a
function only for ulink. And it need only look at the attributes it is given and determine if
there is a url entry. If there is, it appends the value to its internal collection of links. When
we are finished the parsing, we can ask for this collection of links using the additional function
links.

getDocbookLinks =
function()
{
links = character()

ulink = function(name, attrs, ns, namespaces) {

3If we did perform the request, we would merely start the download and perhaps slurp up some of the
response. This would still be available to the XML parser so no data would be lost. It may just marginally
spoil the efficiency of the approach, but really only marginally if at all.

32 R as a Web Client – the RCurl package

if("url" %in% names(attrs))
links[length(links) + 1] <<- attrs["url"]

}

list(ulink = ulink,
links = function() links)

}

To run this code, we need to load both the RCurl and XML packages.

5.3. Multiple Concurrent Downloads using RCurl

In this example, we look at how we can send multiple HTTP requests and process them
concurrently. The basic idea is as follows. We specify a collection of URIs to download when
establishing the HTTP requests, but don’t send any of the requests until all the requests are
constructed. Then, we send all of the requests and get ready to harvest the results as they
are returned by the different Web servers and connections. As each Web server sends back
a piece of the response, we collect that and then return to processing the responses on the
other connections. When the last one finishes, we return control to the caller.
This is quite different from processing the requests sequentially, waiting for one to finish before
starting the next. The expectation is that this concurrent approach will be faster than the
serial version. When we perform the requests sequentially, one slow request will mean our
client will essentially be idle waiting to establish a connection to the Web server or waiting
for a piece of the response. In our interleaved, concurrent approach, the client can continue
to process the other requests while waiting for the server to respond on a slow connection.
This approach is also different from processing all the requests concurrently but in the back-
ground. In that case, having dispatched the requests, control would be returned to the caller
and R would be able to do other things. Notification of pending content from the request
would need to be done via the event loop. This is feasible (at least on Unix), but different
from the example we are describing here. Here, the processing of the set of requests is a
blocking action, but each request is processed asynchronously.
The implementation requires using the“multi” interface for libcurl. We create a multi handle
and then we create a regular curl handle for each individual request, i.e. for each URI to be
fetched. We add each of these regular/easy curl handles to the multi handler and then call
curlMultiPerform() until it terminates. Terminating means either an error or that each of
the requests has completed.

getURIs =
function(uris, ..., multiHandle = getCurlMultiHandle(), .perform = TRUE)
{
content = list()
curls = list()

for(i in uris) {
curl = getCurlHandle()
content[[i]] = basicTextGatherer()
opts = curlOptions(URL = i, writefunction = content[[i]]$update, ...)

Journal of Statistical Software 33

curlSetOpt(.opts = opts, curl = curl)
multiHandle = push(multiHandle, curl)

}

if(.perform) {
complete(multiHandle)
lapply(content, function(x) x$value())

} else {
return(list(multiHandle = multiHandle, content = content))

}
}

We will do some very simple timing experiments to see how the different approaches perform.
These are intended to give an approximate idea of the relative performances. They should not
be taken extremely seriously as there are many different factors for which we need to control
such as the network on which the tests were run, the number and domains of the test pages,
etc.

We will use 5 documents from quite different domains and geographic locations.

uris = c("http://www.omegahat.org/index.html",
"http://www.r-project.org/src/contrib/PACKAGES.html",
"http://developer.r-project.org/index.html",
"http://www.slashdot.org/philosophy.xml",
"http://fxfeeds.mozilla.org/rss20.xml",
"http://www.nytimes.com/index.html")

To see what effect we have on timing, we run the asynchronous version and the serial version
with the commands

asyncTimes = replicate(100, system.time(getURIs(uris)))
serialTimes = replicate(100, system.time(getURI(uris, async = FALSE)))

We get three measurements for each of the 100 replicates, giving the amount of time consumed
within the R process only, within the system-level calls and the total elapsed times.

Figure 1 and table 1 illustrate the difference between the performance of the two methods.
It is clear that there is a lot of variability, with some of the downloads taking up to 20
seconds. And it is also clear that about 80% of the times for the asynchronous downloads are
smaller than the minimum of the 100 serialized downloads. So there is an improvement in
performance, at least in this simple experiment. The distributions of user and system times
are remarkably similar for the two different approaches. This is a little surprising as we would
expect the asynchronous version would spend more time switching between the downloads,
checking to see if there is anything to be read on each connection and so be less idle and
thus consuming more user and system time. The serialized version does not have to do this
switching but can remain idle until there is input waiting on the particular connection on
which it is focusing. We have seen this trade-off between elapsed time and CPU time in other
experiments with different versions of the software. It is a convenient one - the user can chose
whether their time or the computer’s time is more important.

34 R as a Web Client – the RCurl package

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

Asynchronous Serial

0
5

10
15

20
25

Elapsed download times for
Asychronous and Serial methods

Figure 1: Comparison of the download times for the concurrent and serialized requests of the
5 documents.

Minimum 1st Quartile Median 3rd Quartile Maximum
Concurrent 0.638 0.701 0.875 0.909 20.600
Serial 1.64 1.71 1.87 1.91 25.70

Table 1: Distribution of elapsed download times for 100 replicates of the concurrent and serial
HTTP requests of 5 documents.

Journal of Statistical Software 35

5.4. Nested HTML Downloads

The goal of this example is to show how we can parse an HTML document and download
each of the files to which it has links, e.g elements. This is a simple Web crawler
or robot. As we process the original document, we arrange to download the others. There
are three possible “obvious” approaches.

• One approach is to parse the original document in entirety and extract its links (either
by fetching the document and then parsing it or “on the fly” by connecting the output
of the curl request directly to the xml parser). We then download each of those linked
documents.

• Another approach is to start the parsing of the top-level document and when we en-
counter a link, we immediately recursively download that document and then continue
on with the parsing of the original document. In other words, when we encounter a
link, we hand control to the downloading of that link.

• An intermediate approach is to parse the first document and as we encounter a link, send
a request to download that document and arrange to have it be processed concurrently
with the other documents. Essentially, we arrange for the processing of the links to be
done asynchronously. Having encountered a link, we don’t wait until it is completely
downloaded and nor do we wait to download all of the links after we have processed the
original document. Rather, we add a request to download the link as we encounter it
and continue processing.

The strategy in this approach is to start the parsing of the original document. We do this in
almost exactly the same way that we do in the XML parsing example above (see 5.2). That
is, we create a multi CURL handler and we provide a function that will feed data from the
HTTP response to the XML parser when it is required. We then put the downloading of the
original/top-level file on the stack for the multi handler

uri = "http://www.omegahat.org/RCurl/philosophy.xml"

multiHandle = getCurlMultiHandle()
streams = HTTPReaderXMLParser(multiHandle, save = TRUE)

curl = getCurlHandle(URL = uri, writefunction = streams$getHTTPResponse)
multiHandle = push(multiHandle, curl)

At this point, the initial HTTP request has not actually been performed and therefore there
is no data. And this is good. We want to start the XML parser. So we establish the handlers
that will process the XML elements of interest in our document, e.g. a <ulink> for a Docbook
document, or <a> for an HTML document. The function downloadLinks() defined below
is the function used to do this. And now we are ready to start the XML parser via a call to
xmlEventParse() in the XML package.

links = downloadLinks(multiHandle, "http://www.omegahat.org",
"ulink", "url")

xmlEventParse(streams$supplyXMLContent, handlers = links, saxVersion = 2)

36 R as a Web Client – the RCurl package

At this point, the XML parser asks for some input. It calls the supplyXMLContent() and
this fetches data from the HTTP reply. In our case, this will cause the HTTP request to be
sent to the server and we will wait until we get the first part of the document. The XML
parser then takes this chunk and parses it. When it encounters an element of interest, e.g. a
<ulink>, it calls the approriate handler function given in links. And this gets the URI of the
link and then arranges to add to the multi handle an HTTP request to fetch that document.
The next time that the multi curl handle is requested to get input for the XML parser, it will
send that new HTTP request and the response will be available. The writefunction handler
for the new HTTP request simply collects all the text for the document into a single string.
We use basicTextGatherer() for this.

There is one last little detail before we can access the results. It is possible that the XML
event parser will have digested all its input before the downloads for the other documents have
finished. There will be nothing causing libcurl to return to process those HTTP responses.
So they may be stuck in limbo, with input pending but nobody paying attention. To ensure
that this doesn’t happen, we can use the complete() function to complete all the pending
transactions on the multi handle.

complete(multiHandle)

And now that we have guaranteed that all the processing is done (or an error has occurred),
we can access the results. The result of calling downloadLinks() gives us a function to
access the download documents:

links$contents()

To get the original document in addition to its links, we have to look inside the streams
object and ask it for the contents that it downloaded. This is why we called HTMLRead-
erXMLParser() with TRUE for the save argument.

The definition of the XML event handlers is reasonably straightforward at this point. We
need a handler function for the link element that adds an HTTP request for the link document
to the multi curl handle. And we need a way to get the resulting text back when the request
is completed. We maintain a list of text gatherer objects in the variable docs. These are
indexed by the names of the documents being downloaded.

The function that processes a link element in the XML document merely determines whether
the document is already being downloaded (to avoid duplicating the work) or not. If not,
it pushes the new request for that document onto the curl handle and returns. This is the
function op().

There are details about dealing with relative links. We have ignored them here and only dealt
with links that have an explicit http prefix. The function that is used to make the requests
and store the results is then defined as follows:

downloadLinks =
function(curlm, base, elementName = "a", attr = "href", verbose = FALSE)
{

stores the reader function for each document
docs = list()

Journal of Statistical Software 37

accessor for the result on completion, returning all of the documents
contents = function()

sapply(docs, function(x) x$value())

ans = list(docs = function() docs,
contents = contents)

Process the XML node and get the
op = function(name, attrs, ns, namespaces) {

if(attr %in% names(attrs)) {

u = attrs[attr]
if(length(grep("^http:", u)) == 0)

return(FALSE)

if(!(u %in% names(docs))) {
if(verbose)

cat("Adding", u, "to document list\n")
write = basicTextGatherer()
curl = getCurlHandle(URL = u, writefunction = write$update)
curlm <<- push(curlm, curl)

docs[[u]] <<- write
}

}

TRUE
}

Use op as the XML parsing handler for each XML element name of interest
ans[elementName] = op

ans
}

6. Alternative Approaches and Related and Future Work

We mentioned previously that we can achieve basic, high-level support for HTTP directly in
R using the socket connection mechanism or via the HTTP and FTP code in R ported from
the libxml source. One advantage of these approaches is, of course, that R users do not need
to install any additional software to access these functions. Packages that use HTTP requests
via this mechanism do not have any additional dependencies. To make a request via RCurl
on the other hand, a user must install both RCurl and libcurl itself. The installation of the
R package is almost transparent given the good tools that are built into R for distributed

38 R as a Web Client – the RCurl package

package updating. libcurl is also relatively easy to install. Binaries are distributed for a large
number of platforms.

R also provides built-in functions such as download.file() and url(). The former copies the
contents of the target URI to the file system. Unfortunately, to read this information back
into R therefore requires two passes of the contents of the file - one for the download, and
one for the loading into R. Using url(), we can avoid a unnecessay second pass of the data
as this function allows us to read the contents directly from the Web server into R. And we
can use the socket connection tools in R to have even lower-level access to the infrastructure
on which we can build an HTTP client. Naturally, this general communication mechanism
does not have any knowledge of the HTTP format. So we would have to provide higher-level
functionality such as escaping characters, secure connections, support for cookies, etc.

The R package httpRequest available from CRAN provides a higher-level interface to the
HTTP requests using R’s basic socket facilities. The package is intentionally simple, providing
the essentials for downloading URIs, and submitting forms and multi-part POST requests.
As the documentation explains, it does not attempt to escape characters; that is left for the
caller. Also, it does not handle chunked responses. And it intentionally does not attempt
to provide a general interface for adding fields to the HTTP request header other than the
referer field, or handling cookies, SSL connections, etc. Our original work in this area explored
the same approach and built some additional features in a “pure” R package. However, the
details of the various features quickly become overwhelming, eventhough we are working in
a high-level language. We abandoned that work in favor of interfacing to a library that has
ongoing development and wide use.

Having made the decision to use a third-party library to provide the HTTP client facilities in
R, there were still decisions to be made about which approach to take. It is possible to use one
of the inter-system interfaces such as the RSPerl Temple Lang (2006a), SJava Temple Lang
(2005) or RSPython Temple Lang (2006b) packages and use the existing facilities of that other
language to act as a Web client. Alternatively, the more traditional approach, and therefore
potentially simpler to socialize with users, is to use a C/C++ library that provides the
relevant services. And there are many potential candidates. A reasonably comprehensive list
of serious possibilities is given at http://curl.haxx.se/libcurl/competitors.html. Each
has different features, different levels of suppport and active development, and are more or less
portable. The developers of libcurl do appear to have a keen focus on portability and that is a
significant advantage. Other libraries such as libwww, libghttp, libferit, neon, libsoup, mozilla
netlib, http-tiny, fetch all have their own merits. Neon’s support for Distributed Authoring
and Versioning (WebDAV) extensions to HTTP make it interesting. In the end, libcurl’s
extensive facilities, relatively simple programming interface (API) and extensive portability
makes it at least a good choice.

6.1. Future Work

RCurl is reasonably full-functioned as a general HTTP client. Of course, we could continue to
provide higher-level utility functions that would further simplify its use for common situations.
Our focus has instead been on providing a general and flexible infrastructure on which such
high-level functions can be constructed by those working entirely in R.

While the infrastructure is relative complete, there are some additional elements that would
provide useful functionality.

http://curl.haxx.se/libcurl/competitors.html

Journal of Statistical Software 39

Uploading Files, Binary Content and Connections HTML forms provide a way to spec-
ify the name of a file whose contents are to be sent as part of a form submission. The
function postForm() could be made to assist users in this endeavor rather than having
them read the contents of the file and pass this to postForm(). The function could
recognize connection objects or file names in R as special types of arguments and trans-
fer the contents to the body of the HTTP request. The readfunction option for libcurl
requests can be used to do this in different, general ways. There is a complicating factor
since the contents may be in a binary format rather than ASCII and so harder to deal
with directly via text manipulation in R.

Indeed, we often download and upload binary content from and to a Web server. For
example, we might download an image file in JPEG or PNG format, or we might upload
an Rda file containing serialized R data to a web site. At present, the user is on her own
in doing this with the RCurl package. Conceptually it is not very hard to add support
for this. When downloading binary data, the user can specify a C routine that would
take over the processing of the body of the response. Alternatively, when passing the
data to a user-supplied writer function, we can provide it as raw bytes. For uploading
binary data in a request, we can use the same approaches.

However, it would be generally useful to make HTTP requests, both the outgoing request
and the incoming response behave more like connections. Unfortunately, the connection
C-level API in R is not a published one. It is problematic for packages to define new
connection types or extend existing ones.

Classes for URIs It would be useful to have explicit formal (S4) classes to represent URIs.
The natural representation of protocol (e.g. http), port (e.g. 80 for HTTP), domain
(www.omegahat.org) and file path (/RCurl/index.html) would facilitate processing such
inputs. For example, when processing relative URIs such as elements in
HTML and <ulink url=...>, we need to be able to easily compute the fully-qualified
URI of the relative link by merging it with the base URI. These classes are not necessarily
best located within the RCurl package as they are applicable in wider contexts. Rather,
they probably belong in base R and may be added in the future. At present, there are
some facilities for this in the XML package (see http://www.omegahat.org/RSXML).

Exceptions We have a great deal of information from the libcurl library about the nature of
errors that arise during the course of an HTTP request. As with many R packages, we
should make use of an explicit class hierarchy of exception types so that programmers
using this package can provide error handlers for specific types of errors.

Event Loop We have used libcurl to provide asynchronous HTTP requests. In this context,
our application is telling libcurl when it needs more data from these requests. It is
also common to want to initiate asynchronous requests and to have libcurl inform the
application when data is available. This is how most Web browsers work and how we
would like to be able display information within a graphical interface for R. It is possible
for us to access information from libcurl that allows us to integrate the request response
into the R event loop, at least on UNIX platforms. This can be done using the the
routines already in R for registering external sources of events via file descriptors, or
using the REventLoop package (see http://www.omegahat.org/REventLoop).

http://www.omegahat.org/RSXML
http://www.omegahat.org/REventLoop

40 R as a Web Client – the RCurl package

SSL Support We will increasingly access data dynamically from Web servers as regular
documents or via Web service methods and confidentiality and security will become
more essential. As we make further strides in secure communication within statistical
computation, we will need access to the features of libcurl that allow us to control the
behavior of the SSL engine. This includes how certificates are found and authenticated.
While libcurl provides simple-to-use options for controlling some of this, we need to
simplify the ways in we can customize the creation of the secure connections. Indeed, it
would be beneficial to have more general support for SSL in R via a separate package.

Automated Code Generation The interface to libcurl includes information mapping the
individual options, errors, etc. to enumerated values in the C code. We have constructed
these by hand from specific versions of libcurl. As libcurl evolves, new options and
values may be introduced, others removed. These changes will not be included in our
interface unless we update it regularly. Using some tools we are developing separately
from this package – the package RGCCTranslationUnit – we can process the libcurl
source code and generate the interface code automatically.

7. Summary

We outlined the basic structure of HTTP requests that underlie so much of the facilities pro-
vided on the Web. We described an R package - RCurl - that provides high-level facilities
for R programmers to make HTTP requests to servers using a C-level library, libcurl. The
basic functionality allows one to download documents and submit forms. The architecture of
the package allows for a great deal of control by the programmer for more complex queries.
It includes an interface to controlling authentication, secure connections and more by lever-
aging those facilities provided by libcurl. The package allows for sophisticated and efficient
asynchronous request processing. This package already provides the backbone of the client-
side Web services facility in the SSOAP Temple Lang (2006c) package, and the HTMLForms
package. It forms a rich starting point on which other packages using HTTP can be built.

References

(2004). “Sprint IPMON DMS - Application Breakdown.”
http://ipmon.sprintlabs.com/packstat/viewresult.php?0:appsbreakdown:sj-20.0-040206.

Chambers JM (1999). Programming with Data. Springer Verlag.

Claffy K, Miller G (1998). “The Nature of the Beast: Recent Traffic Measurements from an
Internet Backbone.” In “INET ’98,” Internet Society.

Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, P Leach TBL (1999). “Hypertext
Transfer Protocol - HTTP/1.1.” http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Gentleman R, Ihaka R (200). “Lexical Scope and Statistical Computing.” Journal of Com-
putational and Graphical Statistics, 9, 491–508.

Journal of Statistical Software 41

R Development Core Team (2005). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Snell J, Tidwell D, Kulchenko P (2002). Programming Web Services with SOAP. O’Reilly.

Stenberg D, the cURL development team (2006). “libcurl curl easy setopt documentation.”
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html.

Temple Lang D (2005). “The SJava package for R.” http://www.omegahat.org/SJava.

Temple Lang D (2006a). “The RSPerl package for R.” http://www.omegahat.org/RSPerl.

Temple Lang D (2006b). “The RSPython package for R.” http://www.omegahat.org/
RSPython.

Temple Lang D (2006c). “The SSOAP package for R.” http://www.omegahat.org/SSOAP.

Temple Lang D (2006d). “The XML package for R.” http://www.omegahat.org/RSXML.

Veillard D (2006). “libxml: The XML C parser and toolkit of Gnome parsing.”
http://www.xmlsoft.org.

Viega J, Messier M, Chandra P (2002). Network Security with OpenSSL. O’Reilly Media.

(W3C) WWWC (2006). “HyperText Markup Language (HTML) Home Page.”
http://www.w3.org/MarkUp/.

8. Glossary

We provide a short, simple description of some of the acronyms and terms used in the paper.
More information can be found on the Web, e.g. http://www.wikipedia.org.

HTTP HyperText Transfer Protocol

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier. URL was used to signify a Uniform Resource Locator.

Cookie A ”cookie” is a small piece of information sent by a Web server to be stored by a
web browser so it can later be read back in subsequent requests from that browser.
This is useful for having the browser remember some specific information about that
browser/user.

SSL or TLS Secure Socket Layer. This is mechanism for securing the communication over a low-level
socket connection between two machines so that an other application cannot intercept
and interpret the data in a meaningful way. The information is encrypted.

TFTP trivial file transfer protocol. This is a very simple form of file transfer which can be
implemented relatively easily and uses a very small amount of memory. It provides no
security mechanisms. This is used, for example, for booting machines over a network
for thin-clients and routers.

http://www.R-project.org
http://www.R-project.org
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html
http://www.omegahat.org/SJava
http://www.omegahat.org/RSPerl
http://www.omegahat.org/RSPython
http://www.omegahat.org/RSPython
http://www.omegahat.org/RSXML
http://www.wikipedia.org

42 R as a Web Client – the RCurl package

GSS Generic Security Service.

NTLM Windows NT LAN Manager is an authentication protocol used in various Microsoft net-
work protocol implementations and supported by the NTLM Security Support Provider
(”NTLMSSP”). Originally used for authentication and negotiation of secure Remote
Procedure Calls (RPC), NTLM is also used throughout Microsoft’s systems as an in-
tegrated single sign-on mechanism. See http://curl.haxx.se/rfc/ntlm.html for de-
tails.

CRAN Central R Archive Network which is a repository for a large collection of R packages
and related software.

Affiliation:

Duncan Temple Lang
Department of Statistics,
371 Kerr Hall,
One Shields Avenue,
Davis
CA 95616
U.S.A. E-mail: duncan@r-project.org
URL: http://www.stat.ucdavis.edu/~duncan, http://www.omeghat.org

Journal of Statistical Software Submitted: yyyy-mm-dd
MMMMMM YYYY, Volume VV, Issue II. Accepted: yyyy-mm-dd
http://www.jstatsoft.org/

http://curl.haxx.se/rfc/ntlm.html
mailto:duncan@r-project.org
http://www.stat.ucdavis.edu/~duncan
http://www.omeghat.org
http://www.jstatsoft.org/

	Motivation
	Overview of HTTP
	POST and Data in the HTTP Request Body
	Persistent Connections
	Secure Communication via HTTPS
	Authentication
	Cookies

	Basic Functionality
	Getting URIs
	Forms
	Options controlling the request
	The Request Options
	Callback Options
	The Computational Model in RCurl
	Multiple Requests and Handles
	Additional RCurl Functions

	Examples
	SOAP
	Authentication and Passwords
	SSL
	Cookies

	Advanced Usage
	In-line processing
	Connecting RCurl and XML parsers
	Multiple Concurrent Downloads using RCurl
	Nested HTML Downloads

	Alternative Approaches and Related and Future Work
	Future Work

	Summary
	Glossary

