Dealing with alternative
Implementations and approaches

Duncan Temple Lang, University of California at Davis

Table of Contents

Threads, Tasks and AITEINGHIVESccuuuiiiiiiiii e e e et e e e et s e s et s e e et e s s s e bassesebbsseseraasseseraes 1
Alternative StatistiCal APPIrOGCNESooiiiiiiiieiiiii ettt s e s snraee e 4
TRFEAAS ... et e e e et e e e e nnre s 4

BLIE= S T T PO PU PP SPPPPPTPUPRIN 4

Working with Code in @ DOCUMENToiiiiiiiiie e e e e e 9

Some of thismay change dlightly aswe get more use-cases. Mostly, it will be extended to allow for different
scenarios that different people want to express.

Threads, Tasks and Alternatives

Here we talk about different types of code segments that arise when writing a dynamic (and potentialy in-
teractive) document. There are several dightly different aspectsto consider. The first isthat we might have
different implementations of the same basic functionality. For example, we might have a naive implemen-
tation of an agorithm that we devel op first and then a second approach that is more efficient. We may want
to present both to the reader, but have the more efficient version be used. We can prohibit the evaluation of
the first implementation using <r:code eval="false">..., but thisis not ideal. We want to allow the code to
be available for evaluation, but to explicitly identify the two code segments (or sequence of segments) as
being alternativesto each other, giving the same outputs. Weusethe<al t | npl enent at i ons> element
for this and identify each with itsown <al t | npl enent at i on> element. So we might have something
like the following:

<section>
<title>l nplementi ng random nunber generators for m xture nodel s</title>

<par a>
Here we show how we can inplenment a random nunber gener at or
for a mixture nodel. W'll show two different approaches.
</ par a>

<al t I npl emrent at i ons>

<par a>

We' Il focus on a mxture of normals. Each inplenmentation will accept
t he nunber of values to generate, the vector of means and the vector
of SDs of the conponents, and a vector of probabilities.

(These are bare-bones inplenentations for illustrating the

<xm :tag>al ternative</xnl:tag> tag.)

Dealing with alternative implementations and approaches

</ par a>

<altlnplenmentation id="A">

The first version handl es each val ue separately,
generating the conmponent fromwhich to sanple
and then sanpling that.

This is the non-vectorized approach.

<r:function><![CDATA]
rmx = rmx1l =
function(n, means, sd = rep(1l, length(means)), prob = rep(l, I|ength(neans)))
{
i dx = seq(al ong = neans)
replicate(n, { i = sanple(idx, 1, prob = prob)
structure(rnorn(l, means[i], sd[i]), nanes = i)

})
}

]1></r:function>
We can test it with

<r:test><![CDATA

X = rm x(10000, c(0, 5, 10))
pl ot (density(x))
]]1></r:test>

</al tlnpl enentation>
<al t 1l npl ement ati on>

<par a>
A better approach is to sanple the conponents
in one operation and then use the vectorization
of <r:func>rnornx/r:func> to sanple the val ues
in a single operation al so.

<r:function><![CDATA]
rmx = rmx2 =
function(n, means, sd = rep(1l, length(means)), prob = rep(l, I|ength(neans)))
{
k = sanpl e(seq(al ong = neans), n, replace = TRUE, prob = prob)

rnornm(n, means[k], sd[k])
}

]1></r:function>

Again we can test this using the sane code:

Dealing with alternative implementations and approaches

<r:test><![CDATA

X = rm x(10000, c(0, 5, 10))

pl ot (density(x))

]1></r:test>

and of course do nore extensive tests.

</ par a>

</al tlnpl enentation>

<compar e>
<par a>

We can conpare the results with a Q Q plot.
<r: pl ot ><! [CDATA]

x1 = rmix1(10000, c(0, 5, 10))
x2 = rmix2(10000, c(0, 5, 10))

qggpl ot (x1, x2)

]11></r:plot>

W have to be careful we are conparing values within the sane
conmponent s.

</ par a>

<par a>
We can conpare these functions by timng themfor different nunber of observations
We can also |ook at how this varies with different nunbers of conponents.

<r: code><! [CDATA

n = seq(10, length = 50, by = 1000)

tml sapply(n, function(i) systemtinme(rm x1(i, nmeans
tn2 sapply(n, function(i) systemtinme(rm x2(i, nmeans

c(0, 10, 20, 30))))
c(0, 10, 20, 30))))

]1></r:code>

<r: pl ot ><! [CDATA]
mat pl ot (n, cbind(tml[3,], tn2[3,]))
]]1></r:plot>

Dealing with alternative implementations and approaches

</ par a>
</ conpar e>

</al tlnpl enentati ons>

</ section>

Note that we can have arbitrary markup and content within each <al t er nat i vel npl enent ati on>
element and al so preceeding, between andfollowingeach<al t er nat i vel npl enent at i on> element.
The<conpar e> element allows usto provide some discussion about the alternatives which we can supress
(i.e. discard or omit) in certain views of the document.

Indeed, we can discard different alternatives by specifying which ones to use in the actual "running” of
the code within the document. We can giveeach <al t er nat i vel npl enent at i on> atag and specify
which to use. By default, we use the last <al t er nat i vel npl enent at i on> within each <al t er -
nativel npl enent ati ons>.

Alternative Statistical Approaches

In addition to having different implementations of the same programmatic functionality (e.g. implementing
aparticular agorithmic description or using grid or grz or ggplot2 to create the "same" plot), we also have
different approaches to analyzing data. For example, to "fit" a classifier we might use k-nearest neighbors
or aclassification tree or an SVM. Ideally, what we end up with in each approach is one or more R objects
that can be used in subsequent computations, regardless of which approach was used, e.g. viapr edi ct ()
and updat e().

Toidentify different approacheswe use <al t Appr oach>. We group these within an <al t Appr oach-
es> element.

Threads

Once a document contains alternatives of any type, we have an issue of identifying which pieces of code
across different tasks correspond to different alternatives and which sequence of code we want to run.
We use at hr ead attribute on an <al t Appr oach> (or potentially on a <al t | npl enent ati on>
or <r: code>, <r: pl ot >, etc. e ments) to connect the different pieces together. This identifier can be
thought of asa piece of string that defines a path through the document and when we pull it, only the relevant
pieces come from the document. We can have different threads and refer to the by separate names. When
we run the code or simply project the document to a particular view, these threads are treated separately,
some being discarded or within some viewers, selectable by the reader to explore a different path through
the document.

Tasks

Often, a data analysis will have a series of tasks, e.g. access files from a repository and perform transfor-
mations and filtering; read the data into R; exploratory data analysis, modeling; presenting results. Within
some of these steps we might create a collection of derived variables as atask; the EDA can be divided up

Dealing with alternative implementations and approaches

into sub-tasks looking at different aspects of the data. Modeling might involve exploring different families
of models and approaches and evaluating these on test data.

Explicitly identifying the tasks (and sub-tasks within these, etc.) in a case study/data analysis into tasks is
very useful. It allows the reader to see the connections between the tasks and focus on each task separately.
It also identifies different parts of the overall analysis that can be used as incremental exercises across
different assignments, or different starting points that an instructor can use by providing the inputs created
from earlier tasks.

An additional benefit of identifying tasks is that we can identify their inputs and outputs. We can use this
to do minimal evaluation to get to a particular point in the overall computations. We can use these inputs
and outputs also to make the document interactive. Specifically, we can provide GUI controls within the
rendering of the document to allow the reader to specify these values. With some (programmatic) type
inference or specification by the author, we can know the types and possible values for the inputs and
provide more tailored GUI controls, e.g. aslider between 0 and 1 rather. The CodeDepends package can
examine (blocks of) code and potentially identify separate tasks, their connections and also list the inputs
and outputs of separate tasks.

The following are displays of the tasks in two case studies: SPAM and wireless geol ocation.

Figure 1.

Tasks for the SPAM Case Study

http://cran.r-project.org/web/packages/CodeDepends/index.html

Dealing with alternative implementations and approaches

()

Read list of message
files

—

Read individual
message

/ \
/ \

C Ila

s /s if ication,
» 0

Compute Derived
Variables

Exploratory Data

N

Stop words &
Stemming

Compute Bag
of Words

Analysis
// \\
4 \
4 \
¥ 4
k-Nearest Classification
Neighbors Trees

Naieve
Bayes
Classifier

|

‘ Diagnostics)

External
Validation

with new data

Dealing with alternative implementations and approaches

Figure 2.

Tasks for the wireless geo-location case study for the Mannheim experiment

Dealing with alternative implementations and approaches

-

Read Data

Algorithm

Exploratory DataAnalysis
(understand/summarize data)

Aggregate Repeated
Measurements

Visualize Data
interactive Web visualization

AN

Prediction

Regression

k nearest neighbors

Model distance ~
signal strength

Predict distance from
each of the 6 access
points

Find point of
intersection via Least
Squares

Cross Validation

Compute distance
for a given metric

Generate test set
indices

Find k nearest
neighbors &

compute
estimate of
location

Diagnostics of
residuals

External
Validation

with new data

Markup to describe some of these tasks for the SPAM exampleisin spamTasks.xml

spamTasks.xml

Dealing with alternative implementations and approaches

Usethe <t ask> element to identify atask. These can be nested. Add at i t | e attribute to provide a short
description. We expect to be able to use these within programmatically generated figures that display the
flow of tasks.

Tasks will often be sequential and be correspondingly introduced within the document, e.g.,

<task title="Create Derived Variabl es"><xm : ns></xm : ns>

</ task>

<task title="Build Cassifier">

</t ask>

Within atask however, we may have several non-sequential or parallel tasks. We can identify these with
<task title="Create Derived Variabl es">

<paral | el Tasks>

<task title="Is In-Reply To">

</ task>

<task title="Is Digitally Signed">

</ task>

</ parall el Tasks>
</ task>

<task title="Build Cassifier">
</ task>
Within atask we can have various<al t | npl enent at i on> and <al t Appr oach> elements. For ex-

ample, we might have a"Build Classifier" task for classifying SPAM messages. Within this, we might use
aclassification tree, naive Bayes or k-nearest neighbors.

Working with Code in a Document

There are many good things about having code within the actual document. But there can be lots of cut-
ting-and-pasting of the code into R. Emacs, ESS and our extensions to nxml-mode can facilitate this. See
Thesearein very recent versions of the XML package, i.e. >=2.7-0.

Dealing with alternative implementations and approaches

RdocbookEmacs.pdf. There are also facilities within R for evaluating code in such documents. These are
xm Sour ce(), xm Sour ceFunct i ons(), xm Sour ceSect i on() and xm Sour ceThr ead() 1

10

	Dealing with alternative implementations and approaches
	Table of Contents
	Threads, Tasks and Alternatives
	Alternative Statistical Approaches
	Threads

	Tasks
	Working with Code in a Document

