Emacs Facilities for Authoring
Rdocbook Documents

Duncan Temple Lang, University of California at Davis

Table of Contents

(F Lo 18 o1 o o ISP PPRP 1
== S oS PP PRPTPR 1
Yz U (] a0 o L= SRR 4
Evauating R Code and Inserting the QULPULuvveiiriee e e e 4
Adding Name Space DEfINITIONScuviiieiiiiiiiee e e e e e e e s e reeeeeens 5
.. 5

Introduction

| primarily writetechnical documentsusing XML, specifically an extension of the Docbook. The extensions
allow one to add R code, references to R functions, packages and parameters and generally create literate,
dynamic documents with a structured markup. This allows usto use arich, standard toolset to manipulate
such documents, validate and correct them, transform them into different views, reuse components and
generally programmatically and faithfully operate on them.

Since XML is dlightly verbose and highly structured, we want some tools that help us author these docu-
ments. I, like many, use Emacs as my primary editor and environment for programming, interactive com-
puting and authoring documents. Jim Clarke's nxml-mode for Emacs provides a rich mode for authoring
general XML documents. It can prompt the author with the set of permissible XML elements at a particular
point in adocument, it can close elements, navigate by elements (rather than just lines and characters), pro-
vides an outline mode to expand and collapse details. It reads information from a schema and understands
the structure of documents that use that schema.

When writing technical documents that embed R code, we want to be able to send code to the R interpreter
directly fromwhereit residesin the document. We also at times want to include the output from acommand
into the document In this document, we present some simple utilities to handle these interactions as well
asinserting common XML elements such as<r : code>, <r: functi on>, <r: out put >.

Basics

When first start to author an R-Docbook, we would like to use a template that provides the standard
XML declarations, the top-level <arti cl e> tag and namespace definitions we are likely to use (e.g.
xmiIns:r="http://www.r-project.org") a place to specify the author's name, the title and so on. The sample
nxml-mode hook provided by Rdocbook. el will insert adefault template fileinto an empty buffer whose

This may seem unusua for a dynamic document in which we insert the results from running the code when generating the view of
the document rather than when authoring it. However, it is convenient to include the results as the author performs the computations
so that she has them visible when writing about those results. These results are also available without running the code. Because we
have a structured document, we can replace the results with those computed dynamically.

http://www.docbook.org

Emacs Facilities for Authoring Rdocbook Documents

name ends with ".Rdb", i.e. the R Docbook extension. The file used by default isthe one in the same direc-
tory as Rdocbook.el, but users are encouraged to copy this to a new file (and add their own name to the
author list) or create their own template and specify the location by setting the value of the Emacs Lips
variable :

The template allows usto get started authoring a document quickly. The regular nxml-mode facilities help
us to create Docbook content relatively easily. We have added a few key bindings for common compound

Docbook tags. For example, creates a section with atitle and para(graph) elements. Similarly,
we can insert an itemizedlist element with alistitem element with a para child element via .Onecan
use to end thislistitem element and start another. A new paragraph with ablank line between

it and the previous one and space within the <par a> is added with

We have added bindings to insert many of the R-specific markup elements such as r:code, r:output, etc.
Theseareavailableviathe C-c key binding prefix. Table 1, “Key Bindingsfor R Dochook Nodes” (dd) (page
2) lists the different key bindings and the associated nodes they insert.

Table 1. Key Bindings for R Docbook Nodes

Key binding Action

insert an <r : expr > element

insert areferenceto an R function viaa<r : f unc>
element

insert areference to an R packageviaa<r : pkg>
element. Note that the p is not qualified by a Con-
trol.

insert areference to an Omegahat package viaa
<ony: pkg> element. Note that the p is not quali-
fied by a Control but the key sequenceis prefixed
with Control-u.

insert areferenceto an R variableviaa<r : var >
element

insert areferenceto an R parameter viaa
<r:ar g> element

insert areferenceto an R classviaa<r: cl ass>
element. Note that the second key is not qualified
by a Control.

insert areferenceto an R S3 classviaa
<r: s3cl ass> element. Note that the second key
isnot qualified by a Control.

markup for an R language keyword (e.g.) using
the <r : keywor d> element

insert areference to an S3 method using the
<r: s3met hod> element

insert an <r : code> element for R code

Emacs Facilities for Authoring Rdocbook Documents

Key binding

Action

insert an <r : pl ot > element for R code that cre-
ates graphics

insert an<r : f unct i on> element for code defin-
ing an R function

insert an <r : out put > element for representing
the output from an R expression

insert an <r : t est > element for representing code
that is used to test a condition

insert an <r: err or > element to represent the
contents of an R error message

insert an <r : war ni ng> element to represent the
contents of an R warning

insert ani d attribute in the current node, prompt-
ing the author for the value of the id attribute. (Note
thei is not qualified with Control.)

insert an <i gnor e> element so that the contents
are ignored when the document is processed

evaluate the R code within the node in which the
cursor is currently located

evaluate the R code and insert the output for the
node in which the cursor is currently located

insert anew paragraph (<par a>) with white space
around and within the element.

insert a section template with atitle and paragraph

insert anew itemized list (<i t em zedl i st >)
with an empty item

insert anew listitem (<I i sti t en®) with an emp-
ty paraelement

insert a namespace definition (xmins) in the root
node using the built-in table of namespace prefix -
URI pairs.

Let's take a quick look at using these key bindings. To add a reference to an R function named xmi -
Sour ce() , we use to create the <r:func></r:func> content and position the cursor in the middle
of these two elements. Then we type the function name (xmlSource) and use to jump to the end of the

ling, i.e. the end of the </r:func>.

Emacs Facilities for Authoring Rdocbook Documents

The Emacs Lisp function r-insert-node underlies al of these and can be called directly or used in one's own
key bindings. Thisallowsthe caller to specify whether to use CDATA and add new lines between the XML
tags and the content.

One can use these key bindings to insert the start and end node and then fill the contents in. However,
sometimes we will create the content first and then want to put it inside an XML element, i.e. surround
it with the starting and ending XML element. Y ou can do this easily. If you make the content active, i.e.
highlight/select it by setting a mark and moving the point to the start or end of the text, the XML node
insertion function(s) will do the right thing and put the content inside the new node.

The key bindings are chosen to avoid conflicts with common key bindings in other emacs modes. They are
not ideal. Y ou should feel freeto change them and suggest better ones. In addition to using key bindings, one
can also call the r-insert-node function interactively in emacs. It prompts for the name of the node to insert.
Y ou can control whether a CDATA is added by prefixing the call with ©-1; i.e. r-insert-node

3 Note
We are adding functionality that will set the default val ues of the other parameters approrpiately

Evaluating R Code

When we have code in markup within an Rdb document, we often want to evaluate different nodes. We
can do this from within R using the function xm Sour ce() . This gives quite a bit of control over which
nodes to process and one can use X Path expression to identify them explicitly. But it is often convenient to
evaluate code from within the document itself by sending code to R. We use some of the functionality from
ESS (Emacs Speaks Statistics) [1] and some of our own to extract the content from an XML node and have
it evaluated in an R session run via ESS. We start by creating an R session. We do this by loading ESS (see
theinstallation instructions for that software). Then we run R with and specify the relevant directory.
Now, suppose we have the following in our Rdb document:

We sinulate sone data with

<r:code>

X = runi f(100)

y =10 + 3 * x + rexp(length(x))
</r:code>

Then we fit a linear nodel with

<r:code>
m=Imy ~ x)
</r:code>

We position the Emacs cursor anywhere within the contents of either <r : code> node. Then we use the
key binding to send the entire block of code to be evaluated in the R session. When R has finished
that task, we see the "Finshed evaluation" message in the Emacs status/message bar.

Evaluating R Code and Inserting the Output

As we briefly mentioned in the introduction, we also may want to include the output from the evaluation
of the R commands within the Rdb document. We typically put these within <r : out put > elements that

Emacs Facilities for Authoring Rdocbook Documents

are nested within the <r : code> element. Instead of just evaluating the code, we use (pfor thep
in output) and this arranges to both evaluate the expressions and also gather up the output and insert it into
the document. One should set an appropriate value for the option in R so that the output is suitably
formatted for the document.

Note that at present, collecting the output is a little kludgy because of the asynchronous communication
between R and ESS.

Adding Name Space Definitions

Aswe author adocument, we often want to use new namespaces to identify code or content from adifferent
language or context. For example, we might want to show shell commands with <sh: code> or illustrate
the equivalent MATLAB code with <m code>. We can inline the namespace definition in the tag itself,

eg.,

<m code xm ns:m"http://ww. mat hworks.org"> x = 1..10 </ m code>

However, we often end up using this namespace prefix again in other places within the document and so it
is best to put the definition on the root node of the XML document. The function r-add-namespace-def does
thisfor us. It promptsfor the prefix and looks that up in the Emacs variable .If thereisan
entry corresponding to that prefix, the function adds the definition to the root and you can continue editing.
If you want to use adifferent prefix and URL than any in the pre-defined table, either add your entry to the
table or aternatively call r-nxml-insert-namespace with the namespace prefix and the URL. This function
isthe one that actually does the insertion.

Bibliography

[1] Emacs Speaks Statistics. A Rossini, Richard Heiberger, Kurt Hornik, Martin Maechler, Rodney Spara-
pani, and Stephen Eglen.

	Emacs Facilities for Authoring Rdocbook Documents
	Table of Contents
	Introduction
	Basics
	Evaluating R Code
	Evaluating R Code and Inserting the Output

	Adding Name Space Definitions
	
	Bibliography

