
1

Emacs Facilities for Authoring
Rdocbook Documents

Duncan Temple Lang, University of California at Davis

Table of Contents
Introduction .. 1
Basics .. 1
Evaluating R Code ... 4

Evaluating R Code and Inserting the Output .. 4
Adding Name Space Definitions ... 5
.. 5

Introduction
I primarily write technical documents using XML, specifically an extension of the Docbook. The extensions
allow one to add R code, references to R functions, packages and parameters and generally create literate,
dynamic documents with a structured markup. This allows us to use a rich, standard toolset to manipulate
such documents, validate and correct them, transform them into different views, reuse components and
generally programmatically and faithfully operate on them.

Since XML is slightly verbose and highly structured, we want some tools that help us author these docu-
ments. I, like many, use Emacs as my primary editor and environment for programming, interactive com-
puting and authoring documents. Jim Clarke's nxml-mode for Emacs provides a rich mode for authoring
general XML documents. It can prompt the author with the set of permissible XML elements at a particular
point in a document, it can close elements, navigate by elements (rather than just lines and characters), pro-
vides an outline mode to expand and collapse details. It reads information from a schema and understands
the structure of documents that use that schema.

When writing technical documents that embed R code, we want to be able to send code to the R interpreter
directly from where it resides in the document. We also at times want to include the output from a command
into the document1 In this document, we present some simple utilities to handle these interactions as well
as inserting common XML elements such as <r:code>, <r:function>, <r:output>.

Basics
When first start to author an R-Docbook, we would like to use a template that provides the standard
XML declarations, the top-level <article> tag and namespace definitions we are likely to use (e.g.
xmlns:r="http://www.r-project.org") a place to specify the author's name, the title and so on. The sample
nxml-mode hook provided by Rdocbook.el will insert a default template file into an empty buffer whose

1This may seem unusual for a dynamic document in which we insert the results from running the code when generating the view of
the document rather than when authoring it. However, it is convenient to include the results as the author performs the computations
so that she has them visible when writing about those results. These results are also available without running the code. Because we
have a structured document, we can replace the results with those computed dynamically.

http://www.docbook.org

Emacs Facilities for Authoring Rdocbook Documents

2

name ends with ".Rdb", i.e. the R Docbook extension. The file used by default is the one in the same direc-
tory as Rdocbook.el, but users are encouraged to copy this to a new file (and add their own name to the
author list) or create their own template and specify the location by setting the value of the Emacs Lips
variable r-default-nxml-file.

The template allows us to get started authoring a document quickly. The regular nxml-mode facilities help
us to create Docbook content relatively easily. We have added a few key bindings for common compound
Docbook tags. For example, C-s C-s C-s creates a section with a title and para(graph) elements. Similarly,
we can insert an itemizedlist element with a listitem element with a para child element via C-c C-l. One can
use C-c RETURN to end this listitem element and start another. A new paragraph with a blank line between
it and the previous one and space within the <para> is added with C-c C-p.

We have added bindings to insert many of the R-specific markup elements such as r:code, r:output, etc.
These are available via the C-q key binding prefix. Table 1, “Key Bindings for R Docbook Nodes” (dd) (page
2) lists the different key bindings and the associated nodes they insert.

Table 1. Key Bindings for R Docbook Nodes

Key binding Action

C-q x insert an <r:expr> element

C-q f insert a reference to an R function via a <r:func>
element

C-q p insert a reference to an R package via a <r:pkg>
element. Note that the p is not qualified by a Con-
trol.

C-u C-q p insert a reference to an Omegahat package via a
<omg:pkg> element. Note that the p is not quali-
fied by a Control but the key sequence is prefixed
with Control-u.

C-q v insert a reference to an R variable via a <r:var>
element

C-q a insert a reference to an R parameter via a
<r:arg> element

C-q c insert a reference to an R class via a <r:class>
element. Note that the second key is not qualified
by a Control.

C-u C-q c insert a reference to an R S3 class via a
<r:s3class> element. Note that the second key
is not qualified by a Control.

C-q k markup for an R language keyword (e.g. if) using
the <r:keyword> element

C-q s insert a reference to an S3 method using the
<r:s3method> element

C-q C-c insert an <r:code> element for R code

Emacs Facilities for Authoring Rdocbook Documents

3

Key binding Action

C-q C-g insert an <r:plot> element for R code that cre-
ates graphics

C-q C-f insert an <r:function> element for code defin-
ing an R function

C-q C-o insert an <r:output> element for representing
the output from an R expression

C-q C-t insert an <r:test> element for representing code
that is used to test a condition

C-q C-e insert an <r:error> element to represent the
contents of an R error message

C-q C-w insert an <r:warning> element to represent the
contents of an R warning

C-q i insert an id attribute in the current node, prompt-
ing the author for the value of the id attribute. (Note
the i is not qualified with Control.)

C-q C-i insert an <ignore> element so that the contents
are ignored when the document is processed

C-q C-n evaluate the R code within the node in which the
cursor is currently located

C-q C-p evaluate the R code and insert the output for the
node in which the cursor is currently located

C-c C-p insert a new paragraph (<para>) with white space
around and within the element.

C-c C-s C-s insert a section template with a title and paragraph

C-c C-l insert a new itemized list (<itemizedlist>)
with an empty item

C-q C-i insert a new listitem (<listitem>) with an emp-
ty para element

C-q n insert a namespace definition (xmlns) in the root
node using the built-in table of namespace prefix -
URI pairs.

Let's take a quick look at using these key bindings. To add a reference to an R function named xml-
Source() , we use C-q C-f to create the <r:func></r:func> content and position the cursor in the middle
of these two elements. Then we type the function name (xmlSource) and use C-e to jump to the end of the
line, i.e. the end of the </r:func>.

Emacs Facilities for Authoring Rdocbook Documents

4

The Emacs Lisp function r-insert-node underlies all of these and can be called directly or used in one's own
key bindings. This allows the caller to specify whether to use CDATA and add new lines between the XML
tags and the content.

One can use these key bindings to insert the start and end node and then fill the contents in. However,
sometimes we will create the content first and then want to put it inside an XML element, i.e. surround
it with the starting and ending XML element. You can do this easily. If you make the content active, i.e.
highlight/select it by setting a mark and moving the point to the start or end of the text, the XML node
insertion function(s) will do the right thing and put the content inside the new node.

The key bindings are chosen to avoid conflicts with common key bindings in other emacs modes. They are
not ideal. You should feel free to change them and suggest better ones. In addition to using key bindings, one
can also call the r-insert-node function interactively in emacs. It prompts for the name of the node to insert.
You can control whether a CDATA is added by prefixing the call with C-u, i.e. C-uESC-xr-insert-node

Note

We are adding functionality that will set the default values of the other parameters approrpiately

Evaluating R Code
When we have code in markup within an Rdb document, we often want to evaluate different nodes. We
can do this from within R using the function xmlSource() . This gives quite a bit of control over which
nodes to process and one can use XPath expression to identify them explicitly. But it is often convenient to
evaluate code from within the document itself by sending code to R. We use some of the functionality from
ESS (Emacs Speaks Statistics) [1] and some of our own to extract the content from an XML node and have
it evaluated in an R session run via ESS. We start by creating an R session. We do this by loading ESS (see
the installation instructions for that software). Then we run R with Esc-R and specify the relevant directory.
Now, suppose we have the following in our Rdb document:

We simulate some data with
<r:code>
x = runif(100)
y = 10 + 3 * x + rexp(length(x))
</r:code>

Then we fit a linear model with
<r:code>
m = lm(y ~ x)
</r:code>

We position the Emacs cursor anywhere within the contents of either <r:code> node. Then we use the
key binding C-q C-n to send the entire block of code to be evaluated in the R session. When R has finished
that task, we see the "Finshed evaluation" message in the Emacs status/message bar.

Evaluating R Code and Inserting the Output
As we briefly mentioned in the introduction, we also may want to include the output from the evaluation
of the R commands within the Rdb document. We typically put these within <r:output> elements that

Emacs Facilities for Authoring Rdocbook Documents

5

are nested within the <r:code> element. Instead of just evaluating the code, we use C-q C-p (p for the p
in output) and this arranges to both evaluate the expressions and also gather up the output and insert it into
the document. One should set an appropriate value for the width option in R so that the output is suitably
formatted for the document.

Note that at present, collecting the output is a little kludgy because of the asynchronous communication
between R and ESS.

Adding Name Space Definitions
As we author a document, we often want to use new namespaces to identify code or content from a different
language or context. For example, we might want to show shell commands with <sh:code> or illustrate
the equivalent MATLAB code with <m:code>. We can inline the namespace definition in the tag itself,
e.g.,

<m:code xmlns:m="http://www.mathworks.org"> x = 1..10 </m:code>

However, we often end up using this namespace prefix again in other places within the document and so it
is best to put the definition on the root node of the XML document. The function r-add-namespace-def does
this for us. It prompts for the prefix and looks that up in the Emacs variable rxml-namespaces. If there is an
entry corresponding to that prefix, the function adds the definition to the root and you can continue editing.
If you want to use a different prefix and URL than any in the pre-defined table, either add your entry to the
table or alternatively call r-nxml-insert-namespace with the namespace prefix and the URL. This function
is the one that actually does the insertion.

Bibliography
[1] Emacs Speaks Statistics. A Rossini, Richard Heiberger, Kurt Hornik, Martin Maechler, Rodney Spara-

pani, and Stephen Eglen.

	Emacs Facilities for Authoring Rdocbook Documents
	Table of Contents
	Introduction
	Basics
	Evaluating R Code
	Evaluating R Code and Inserting the Output

	Adding Name Space Definitions
	
	Bibliography

